Science Current Events | Science News | Brightsurf.com
 

ORNL process could be white lightning to electronics industry

December 02, 2015

A new era of electronics and even quantum devices could be ushered in with the fabrication of a virtually perfect single layer of "white graphene," according to researchers at the Department of Energy's Oak Ridge National Laboratory.

The material, technically known as hexagonal boron nitride, features better transparency than its sister, graphene, is chemically inert, or non-reactive, and atomically smooth. It also features high mechanical strength and thermal conductivity. Unlike graphene, however, it is an insulator instead of a conductor of electricity, making it useful as a substrate and the foundation for the electronics in cell phones, laptops, tablets and many other devices.

"Imagine batteries, capacitors, solar cells, video screens and fuel cells as thin as a piece of paper," said ORNL's Yijing Stehle, postdoctoral associate and lead author of a paper published in Chemistry of Materials. She and colleagues are also working on a graphene hexagonal boron 2-D capacitor and fuel cell prototype that are not only "super thin" but also transparent.

With their recipe for white graphene, ORNL researchers hope to unleash the full potential of graphene, which has not delivered performance consistent with its theoretical value. With white graphene as a substrate, researchers believe they can help solve the problem while further reducing the thickness and increasing the flexibility of electronic devices.

While graphene, which is stronger and stiffer than carbon fiber, is a promising material for data transfer devices, graphene on a white graphene substrate features several thousand times higher electron mobility than graphene on other substrates. That feature could enable data transfers that are much faster than what is available today. "Imagine your message being sent thousands of times faster," Stehle said.

Stehle noted that this work is especially significant because it takes the material beyond theory. A recent theoretical study led by Rice University, for instance, proposed the use of white graphene to cool electronics. Stehle and colleagues have made high-quality layers of hexagonal boron nitride they believe can be cost-effectively scaled up to large production volumes.

"Various hexagonal boron nitride single crystal morphology - triangle to hexagon - formulations have been mentioned in theoretical studies, but for the first time we have demonstrated and explained the process," Stehle said.

That process consists of standard atmospheric pressure chemical vapor deposition with a similar furnace, temperature and time, but there's a twist. The difference is what Stehle describes as "a more gentle, controllable way to release the reactant into the furnace and figuring out how to take advantage of inner furnace conditions. These two factors are almost always neglected."

Stehle continued: "I just thought carefully beforehand and was curious. For example, I remind myself that there are many conditions in this experiment that can be adjusted and could make a difference. Whenever I see non-perfect results, I do not count them as another failure but, instead, another condition adjustment to be made. This 'failure' may become valuable."

Co-authors of the paper. are Harry Meyer, Raymond Unocic, Michelle Kidder, Georgios Polizos, Panos Datskos, Roderick Jackson and Ivan Vlassiouk of ORNL and Sergei Smirnov of New Mexico State University. Funding was provided by the Laboratory Directed Research and Development program. A portion of the research was conducted at the Center for Nanophase Materials Science, a DOE Office of Science User Facility at ORNL.

UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

###

Image: https://www.ornl.gov/sites/default/files/news/images/2015-P07052_0.jpg

Cutline: Growth and transfer of 2-D material such as hexagonal boron nitride and graphene was performed by a team that included Yijing Stehle of Oak Ridge National Laboratory.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/ornl

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

DOE/Oak Ridge National Laboratory


Related Graphene Current Events and Graphene News Articles


New tabletop instrument tests electron mobility for next-generation electronics
The National High Magnetic Field Laboratory, with facilities in Florida and New Mexico, offers scientists access to enormous machines that create record-setting magnetic fields.

Rice de-icer gains anti-icing properties
Rice University scientists have advanced their graphene-based de-icer to serve a dual purpose. The new material still melts ice from wings and wires when conditions get too cold. But if the air is above 7 degrees Fahrenheit, ice won't form at all.

Graphene makes rubber more rubbery
In an article published in Carbon, Dr Aravind Vijayaraghavan and Dr Maria Iliut from Manchester have shown that adding a very small amount of graphene, the world's thinnest and strongest material, to rubber films can increase both their strength and the elasticity by up to 50%.

Researchers demonstrate size quantization of Dirac fermions in graphene
Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Graphene: A quantum of current
In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms arranged in a honeycomb lattice.

New type of graphene-based transistor will increase the clock speed of processors
Scientists have developed a new type of graphene-based transistor and using modelling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices.

This 'nanocavity' may improve ultrathin solar panels, video cameras and more
The future of movies and manufacturing may be in 3-D, but electronics and photonics are going 2-D; specifically, two-dimensional semiconducting materials.

Microwaved nanoribbons may bolster oil and gas wells
Wellbores drilled to extract oil and gas can be dramatically reinforced with a small amount of modified graphene nanoribbons added to a polymer and microwaved, according to Rice University researchers.

New research shows how silver could be the key to gold-standard flexible gadgets
Research published in the journals Materials Today Communications and Scientific Reports has described how silver nanowires are proving to be the ideal material for flexible, touch-screen technologies while also exploring how the material can be manipulated to tune its performance for other applications.

Graphene flakes to calm synapses
The laboratory of SISSA's Laura Ballerini in collaboration with the University of Trieste, the University of Manchester and the University of Castilla -la Mancha, has discovered a new approach to modulating synapses.
More Graphene Current Events and Graphene News Articles

Graphene: Fundamentals and emergent applications

Graphene: Fundamentals and emergent applications
by Jamie H. Warner (Author), Franziska Schaffel (Author), Mark Rummeli (Author), Alicja Bachmatiuk (Author)


Providing fundamental knowledge necessary to understand graphene’s atomic structure, band-structure, unique properties and an overview of groundbreaking current and emergent applications, this new handbook is essential reading for materials scientists, chemists and physicists. Since the 2010 physics Nobel Prize awarded to Geim and Novosolev for their groundbreaking work isolating graphene from bulk graphite, there has been a huge surge in interest in the area. This has led to a large number of news books on graphene. However, for such a vast inflow of new entrants, the current literature is surprisingly slight, focusing exclusively on current research or books on previous "hot topic" allotropes of carbon. This book covers fundamental groundwork of the structure, property,...

Graphene: A New Paradigm in Condensed Matter and Device Physics

Graphene: A New Paradigm in Condensed Matter and Device Physics
by E. L. Wolf (Author)


The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law.

The book describes the unusual physics of the material, that it offers linear rather than parabolic energy bands. The Dirac-like electron energy bands lead to high constant carrier speed, similar to light photons. The...

Graphene: Fundamentals, Devices, and Applications

Graphene: Fundamentals, Devices, and Applications
by Serhii Shafraniuk (Author)


Graphene is the first example of two-dimensional materials and is the most important growth area of contemporary research. It forms the basis for new nanoelectronic applications. Graphene, which comprises field-effect structures, has remarkable physical properties. This book focuses on practical applications determined by the unique properties of graphene. Basic concepts are elucidated by end-of-chapter problems, the answers to which are provided in the accompanying solutions manual. The mechanisms of electric and thermal transport in the gated graphene, interface phenomena, quantum dots, non-equilibrium states, scattering and dissipation, as well as coherent transport in graphene junctions are considered in detail in the book. Detailed analyses and comparison between theory and...

The Chemistry Book: From Gunpowder to Graphene, 250 Milestones in the History of Chemistry (Sterling Milestones)

The Chemistry Book: From Gunpowder to Graphene, 250 Milestones in the History of Chemistry (Sterling Milestones)
by Derek B Lowe (Author)


From atoms and fluorescent pigments to sulfa drug synthesis and buckyballs, this lush and authoritative chronology presents 250 milestones in the world of chemistry. As the "central science" that bridges biology and physics, chemistry plays an important role in countless medical and technological advances. Covering entertaining stories and unexpected applications, chemist and journalist Derek B. Lowe traces the most important—and surprising—chemical discoveries.

Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World

Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World
by Mark Miodownik (Author)


New York Times Bestseller • New York Times Notable Book 2014 • Winner of the Royal Society Winton Prize for Science Books

“A thrilling account of the modern material world.” —Wall Street Journal

"Miodownik, a materials scientist, explains the history and science behind things such as paper, glass, chocolate, and concrete with an infectious enthusiasm." —Scientific American

Why is glass see-through? What makes elastic stretchy? Why does any material look and behave the way it does? These are the sorts of questions that renowned materials scientist Mark Miodownik constantly asks himself. Miodownik studies objects as ordinary as an envelope and as unexpected as concrete cloth, uncovering the fascinating secrets that hold together our physical...

Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport

Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport
by Luis E. F. Foa Torres (Author), Stephan Roche (Author), Jean-Christophe Charlier (Author)


Beginning with an introduction to carbon-based nanomaterials, their electronic properties, and general concepts in quantum transport, this detailed primer describes the most effective theoretical and computational methods and tools for simulating the electronic structure and transport properties of graphene-based systems. Transport concepts are clearly presented through simple models, enabling comparison with analytical treatments, and multiscale quantum transport methodologies are introduced and developed in a straightforward way, demonstrating a range of methods for tackling the modelling of defects and impurities in more complex graphene-based materials. The authors also discuss the practical applications of this revolutionary nanomaterial, contemporary challenges in theory and...

An Introduction to Graphene and Carbon Nanotubes

An Introduction to Graphene and Carbon Nanotubes
by John E. Proctor (Author), Daniel Melendrez Armada (Author), Aravind Vijayaraghavan (Author)


Carbon nanotubes and graphene have been the subject of intense scientific research since their relatively recent discoveries. This book introduces the reader to the science behind these rapidly developing fields, and covers both the fundamentals and latest advances. Uniquely, this book covers the topics in a pedagogical manner suitable for undergraduate students. The book also uses the simple systems of nanotubes and graphene as models to teach concepts such as molecular orbital theory, tight binding theory and the Laue treatment of diffraction. Suitable for undergraduate students with a working knowledge of basic quantum mechanics, and for postgraduate researchers commencing their studies into the field, this book will equip the reader to critically evaluate the physical properties and...

The Millionaire Investor: Better than gold, diamonds or real-estate: Graphene (investing guide, investor, stock investor, how to become a millionaire)

The Millionaire Investor: Better than gold, diamonds or real-estate: Graphene (investing guide, investor, stock investor, how to become a millionaire)


NEW AND UPDATED CONTENT!
New chapters, new companies added. Many pictures and up-to date content! Buy NOW!

Who hasn’t heard about people who restlessly scan the market for stocks that perform extraordinarily? Those who want to how to become a millionaire ? One of the companies that has skyrocketed in the past years is Microsoft. Whatever you’d invested in the 1980s – you became rich within 15 years. In this book, I want to show that a similar scenario is possible.
One can become rich by investing in the right stocks. But, not by tricks, cheats or any other miraculous recipe. No. Just by observing the dramatic changes in an area of technology that is so far only known to insiders. We will see the dawn of a fascinating new era. The consequences of the changes...

Graphene: Fabrication, Characterizations, Properties and Applications

Graphene: Fabrication, Characterizations, Properties and Applications
by Hongwei Zhu (Author)


Graphene: Fabrication, Characterizations, Properties and Applications presents a comprehensive review of the current status of graphene, especially focused on synthesis, fundamental properties and future applications, aiming to giving a comprehensive reference for scientists, researchers and graduate students from various sectors. Graphene, a single atomic layer of carbon hexagons, has stimulated a lot of research interest owing to its unique structure and fascinating properties. The book is devoted to understanding graphene fundamentally yet comprehensively through a wide range of issues in the areas of materials science, chemistry, physics, electronics and biology. The book is an important resource of comprehensive knowledge pertinent to graphene and to related expanding areas. This...

Graphene

Graphene
by Caravan Publishing


A scientific genius escapes from Soviet Russia with his wife. They have nothing, but the help of a stranger starts him on his way to accumulating a fortune, with a steady flow of inventions. He finds graphene, a miracle material that has almost unimaginable qualities, but can only be extracted in minute quantities. Leonid sees the potential of the product for the entire world and, together with Marina, his daughter, he develops a means to produce the material cheaply enough to compete with almost every existing product that it can replace. He fails to reckon with big business, and the predators who are so fixated on their own profit that they will stop at nothing to remove the threat that he and graphene present.
In this fast-paced story of genius versus business, Nicole Stuart...

© 2017 BrightSurf.com