Science Current Events | Science News | Brightsurf.com
 

Fuel cell advance

January 19, 2016

"Planes, Trains and Automobiles" is a popular comedy from the 1980s, but there's nothing funny about the amount of energy consumed by our nation's transportation sector.

This sector -- which includes passenger cars, trucks, buses, and rail, marine, and air transport -- accounts for more than 20 percent of America's energy use, mostly in the form of fossil fuels, so the search is on for environmentally friendly alternatives.

The two most promising current candidates for cars are fuel cells, which convert the chemical energy of hydrogen to electricity, and rechargeable batteries.

The University of Delaware's Yushan Yan believes that fuel cells will eventually win out.

"Both fuel cells and batteries are clean technologies that have their own sets of challenges for commercialization," says Yan, Distinguished Engineering Professor in the Department of Chemical and Biomolecular Engineering.

"The key difference, however, is that the problems facing battery cars, such as short driving range and long battery charging time, are left with the customers. By contrast, fuel cell cars demand almost no change in customer experience because they can be charged in less than 5 minutes and be driven for more than 300 miles in one charge. And these challenges, such as hydrogen production and transportation, lie with the engineers."

Yan is prepared to address the biggest challenge fuel cells do face -- cost.

He and colleagues recently reported a breakthrough that promises to bring down the cost of hydrogen fuel cells by replacing expensive platinum catalysts with cheaper ones made from metals like nickel. The work is documented in a paper published Jan. 14 in Nature Communications.

The researchers achieved the breakthrough by switching the operating environment from acidic to basic, and they found that nickel matched the activity of platinum.

"This new hydroxide exchange membrane fuel cell can offer high performance at an unprecedented low cost," Yan says.

"Our real hope is that we can put hydroxide exchange membrane fuel cells into cars and make them truly affordable -- maybe $23,000 for a Toyota Mirai. Once the cars themselves are more affordable, that will drive development of the infrastructure to support the hydrogen economy."

###

About the research

The paper, "Nickel Supported on Nitrogen-doped Carbon Nanotubes as Hydrogen Oxidation Reaction Catalyst in Alkaline Electrolyte," was co-authored by Zhongbin Zhuang at the Beijing University of Chemical Technology and UD's Stephen Giles, Jie Zheng, Glen Jenness, Stavros Caratzoulas and Dionisios Vlachos.

The experimental work was supported by the ARPA-E program of the U.S. Department of Energy under Award Number DE-AR0000009.

The computational work was financially supported by the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004.

Stephen Giles was supported by a fellowship from the University of Delaware Energy Institute.

The research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

University of Delaware


Related Fuel Cells Current Events and Fuel Cells News Articles


Tiny probe could produce big improvements in batteries and fuel cells
A team of American and Chinese researchers has developed a new tool that could aid in the quest for better batteries and fuel cells.

Proton-conducting material found in electrosensory organs of sharks
Sharks, skates, and rays can detect very weak electric fields produced by prey and other animals using an array of unusual organs known as the ampullae of Lorenzini. Exactly how these electrosensory organs work has remained a mystery, but a new study has revealed an important clue that may have implications for other fields of research.

Speedy ion conduction in solid electrolytes clears road for advanced energy devices
In a rechargeable battery, the electrolyte transports lithium ions from the negative to the positive electrode during discharging.

Hybrid system could cut coal-plant emissions in half
Most of the world's nations have agreed to make substantial reductions in their greenhouse gas emissions, but achieving these goals is still a considerable technological, economic, and political challenge.

How to make metal alloys that stand up to hydrogen
High-tech metal alloys are widely used in important materials such as the cladding that protects the fuel inside a nuclear reactor.

New harmonized test protocols for PEM fuel cells in hydrogen vehicles
A lack of standards for testing polymer electrolyte membrane (PEM) fuel cells - the most attractive type of fuel cells for powering vehicles - has hampered objective comparative assessment of their performance and durability under operating conditions and hence of their technological progress.

Penn chemists lay groundwork for countless new, cleaner uses of methane
Methane is the world's most abundant hydrocarbon. It's the major component of natural gas and shale gas and, when burned, is an effective fuel.

Saving sunshine for a rainy day: New catalyst offers efficient storage of green energy
We can't control when the wind blows and when the sun shines, so finding efficient ways to store energy from alternative sources remains an urgent research problem.

Pumping up energy storage with metal oxides
Material scientists at Lawrence Livermore National Laboratory have found certain metal oxides increase capacity and improve cycling performance in lithium-ion batteries.

Wrinkles and crumples make graphene better
Crumple a piece of paper and it's probably destined for the trash can, but new research shows that repeatedly crumpling sheets of the nanomaterial graphene can actually enhance some of its properties. In some cases, the more crumpled the better.
More Fuel Cells Current Events and Fuel Cells News Articles

Build Your Own Fuel Cells

Build Your Own Fuel Cells
by Phillip Hurley (Author)


The technology of the future is here today - and now available to the non-engineer! Build Your Own Fuel Cells contains complete, easy to understand illustrated instructions for building several types of proton exchange membrane (PEM) fuel cells - and, templates for 6 PEM fuel cell types, including convection fuel cells and oxygen-hydrogen fuel cells, in both single slice and stacks. Low tech/high quality Two different low-tech fuel cell construction methods are covered: one requires a bandsaw and drill press, and the other only a few hand tools. Anyone with minimum skills and tools will be able to produce high quality fuel cells from readily obtainable materials - contact info for materials suppliers is included. Electrolyzers and MEAs Build Your Own Fuel Cells includes a detailed...

Fuel Cell Fundamentals

Fuel Cell Fundamentals
by Ryan O'Hayre (Author), Suk-Won Cha (Author), Whitney Colella (Author), Fritz B. Prinz (Author)


A complete, up-to-date, introductory guide to fuel cell technology and application Fuel Cell Fundamentals provides a thorough introduction to the principles and practicalities behind fuel cell technology. Beginning with the underlying concepts, the discussion explores fuel cell thermodynamics, kinetics, transport, and modeling before moving into the application side with guidance on system types and design, performance, costs, and environmental impact. This new third edition has been updated with the latest technological advances and relevant calculations, and enhanced chapters on advanced fuel cell design and electrochemical and hydrogen energy systems. Worked problems, illustrations, and application examples throughout lend a real-world perspective, and end-of chapter review questions...

Build A Solar Hydrogen Fuel Cell System

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)


Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology. Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including: ESPMs (Electrolyzer Specific Photovoltaic Modules) – 40 watt solar panels designed specifically to run electrolyzers efficiently; a 40-80 watt electrolyzer for intermittant power from renewable energy sources such as solar and wind; and, a 6-12...

Fuel Cells

Fuel Cells
by Paul Breeze (Author)


Fuel Cells is a concise, up-to-date and accessible guide to the evolution of the use of electrochemistry to generate power. The author provides a comprehensive exploration of the history of fuel cells, the environmental concerns which came into prominence in the 1980s and the economic factors associated with this method of power generation. Examples discussed include Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Molton Carbonate Fuel Cells and Solid Oxide Fuel Cells, making this a valuable and insightful read for those in the power generation market and those in electrochemistry, such as engineers, managers and academics.Explores multiple variations of fuel cell technology and evaluates their cost and applicationProvides detailed historical context, beginning in 1839 with the...

Fuel Cell Fundamentals

Fuel Cell Fundamentals
by Ryan O'Hayre (Author), Suk-Won Cha (Author), Whitney Colella (Author), Fritz B. Prinz (Author)


As the search for alternative fuels heats up, no topic is hotter than fuel cells. Filling a glaring gap in the literature, Fuel Cell Fundamentals, Second Edition gives advanced undergraduate and beginning level graduate students an important introduction to the basic science and engineering behind fuel cell technology. Emphasizing the foundational scientific principles that apply to any fuel cell type or technology, the text provides straightforward descriptions of how fuel cells work, why they offer the potential for high efficiency, and how their unique advantages can best be used. Designed to be accessible to fuel cell beginners, the text is suitable for any engineering or science major with a background in calculus, basic physics, and elementary thermodynamics. This new edition...

Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet (MIT Press)

Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet (MIT Press)
by Peter Hoffmann (Author), Byron Dorgan (Foreword)


Hydrogen is the most abundant element in the universe. An invisible, tasteless, colorless gas, it can be converted to nonpolluting, zero-emission, renewable energy. When burned in an internal combustion engine, hydrogen produces mostly harmless water vapor. It performs even better in fuel cells, which can be 2.5 times as efficient as internal-combustion engines. Zero-emission hydrogen does not contribute to CO2-caused global warming. Abundant and renewable, it is unlikely to be subject to geopolitical pressures or scarcity concerns. In this new edition of his pioneering book Tomorrow's Energy, Peter Hoffmann makes the case for hydrogen as the cornerstone of a new energy economy. Hoffmann covers the major aspects of hydrogen production, storage, transportation, fuel use, and safety. He...

Fuel Cell Handbook (Fifth Edition)

Fuel Cell Handbook (Fifth Edition)
by U.S. Department Of Energy (Author)


Fuel cells are an important technology for a potentially wide variety of applications including micropower, auxiliary power, transportation power, stationary power for buildings and other distributed generation applications, and central power. These applications will be in a large number of industries worldwide. This edition of the Fuel Cell Handbook is more comprehensive than previous versions in that it includes several changes. First, calculation examples for fuel cells are included for the wide variety of possible applications. This includes transportation and auxiliary power applications for the first time. In addition, the handbook includes a separate section on alkaline fuel cells. The intermediate temperature solid-state fuel cell section is being developed. In this edition,...

PEM Fuel Cell Modeling and Simulation Using Matlab

PEM Fuel Cell Modeling and Simulation Using Matlab
by Colleen Spiegel (Author)


Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money.

Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design...

Fuel Cell Technology Handbook

Fuel Cell Technology Handbook
by Gregor Hoogers (Author)


Fuel cell systems have now reached a degree of technological maturity and appear destined to form the cornerstone of future energy technologies. But the rapid advances in fuel cell system development have left current information available only in scattered journals and Internet sites. The even faster race toward fuel cell commercialization further leaves the objectivity of many Internet articles open to question. The Fuel Cell Technology Handbook provides the first comprehensive treatment of both the technical and commercial aspects of high and low temperature fuel cells, fuel cell systems, fuel cell catalysis, and fuel generation. It sets forth the principles of fuel cell technology and summarizes the main concepts, developments and remaining technical problems, particularly in...

Fuel Cell Handbook (Seventh Edition)

Fuel Cell Handbook (Seventh Edition)
by Eg&G Technical Services Inc. (Author), U.S. Department Of Energy (Contributor)


Fuel cells are one of the cleanest and most efficient technologies for generating electricity. Since there is no combustion, there are none of the pollutants commonly produced by boilers and furnaces. For systems designed to consume hydrogen directly, the only products are electricity, water and heat. Fuel cells are an important technology for a potentially wide variety of applications including on-site electric power for households and commercial buildings; supplemental or auxiliary power to support car, truck and aircraft systems; power for personal, mass and commercial transportation; and the modular addition by utilities of new power generation closely tailored to meet growth in power consumption. These applications will be in a large number of industries worldwide. In this Seventh...

© 2017 BrightSurf.com