Science Current Events | Science News | Brightsurf.com
 

Host-guest nanowires for efficient water splitting and solar energy storage

February 03, 2016

California is committed to 33 percent energy from renewable resources by 2020. With that deadline fast approaching, researchers across the state are busy exploring options. Solar energy is attractive but for widespread adoption, it requires transformation into a storable form. This week in ACS Central Science, researchers report that nanowires made from multiple metal oxides could put solar ahead in this race.

One way to harness solar power for broader use is through photoelectrochemical (PEC) water splitting that provides hydrogen for fuel cells. Many materials that can perform the reaction exist, but most of these candidates suffer from issues, ranging from efficiency to stability and cost. Peidong Yang and colleagues designed a system where nanowires from one of the most commonly used materials (TiO2) acts as a "host" for "guest" nanoparticles from another oxide called BiVO4. BiVO4 is a newly introduced material that is among the best ones for absorbing light and performing the water splitting reaction, but does not carry charge well while TiO2 is stable, cheap and an efficient charge carrier but does not absorb light well. Together with a unique studded nanowire architecture, the new system works better than either material alone. The authors state their approach can be used to improve the efficiencies of other photoconversion materials.

###

The authors acknowledge funding from the Department of Energy, the National Science Foundation and the University of California, Berkeley.

The paper will be freely available on February 3rd, at this link: http://pubs.acs.org/doi/full/10.1021/acscentsci.5b00402

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

American Chemical Society


Related Nanowires Current Events and Nanowires News Articles


The next generation of carbon monoxide nanosensors
The detection of carbon monoxide (CO) in the air is a vital issue, as CO is a poisonous gas and an environmental pollutant. CO typically derives from the incomplete combustion of carbon-based fuels, such as cooking gas and gasoline; it has no odour, taste, or colour and hence it is difficult to detect.

New research shows how silver could be the key to gold-standard flexible gadgets
Research published in the journals Materials Today Communications and Scientific Reports has described how silver nanowires are proving to be the ideal material for flexible, touch-screen technologies while also exploring how the material can be manipulated to tune its performance for other applications.

Newly discovered organic nanowires leave manmade technologies in their dust
A microbial protein fiber discovered by a Michigan State University scientist transports charges at rates high enough to be applied in manmade nanotechnologies.

New molecular property may mean more efficient solar and opto-electronic devices
Chemists and polymer scientists collaborating at the University of Massachusetts Amherst report in Nature Communications this week that they have for the first time identified an unexpected property in an organic semiconductor molecule that could lead to more efficient and cost-effective materials for use in cell phone and laptop displays, for example, and in opto-electronic devices such as lasers, light-emitting diodes and fiber optic communications.

New type of nanowires, built with natural gas heating
A team of Korean researchers, affiliated with UNIST has recently pioneered in developing a new simple nanowire manufacturing technique that uses self-catalytic growth process assisted by thermal decomposition of natural gas.

New material for detecting photons captures more quantum information
Detecting individual particles of light just got a bit more precise--by 74 picoseconds to be exact--thanks to advances in materials by National Institute of Standards and Technology (NIST) researchers and their colleagues in fabricating superconducting nanowires.

Promising new approach for controlled fabrication of carbon nanostructures
An international team of researchers including Professor Federico Rosei and members of his group at INRS has developed a new strategy for fabricating atomically controlled carbon nanostructures used in molecular carbon-based electronics.

Minuscule, flexible compound lenses magnify large fields of view
Drawing inspiration from an insect's multi-faceted eye, University of Wisconsin-Madison engineers have created miniature lenses with vast range of vision.

Hot stuff: Magnetic domain walls
Magnetic nanostructures - or rather: the interaction between charge, spin and current flow as a function of a temperature gradient in such structures - this is what the fast growing research area named "spin caloritronics" deals with.

Nanoelectronics researchers employ Titan for an electrifying simulation speedup
Researchers at ETH Zurich are using America's fastest supercomputer to make huge gains in understanding the smallest electronic devices.
More Nanowires Current Events and Nanowires News Articles

Nanowire Transistors: Physics of Devices and Materials in One Dimension

Nanowire Transistors: Physics of Devices and Materials in One Dimension
by Jean-Pierre Colinge (Author), James C. Greer (Author)


From quantum mechanical concepts to practical circuit applications, this book presents a self-contained and up-to-date account of the physics and technology of nanowire semiconductor devices. It includes a unified account of the critical ideas central to low-dimensional physics and transistor physics which equips readers with a common framework and language to accelerate scientific and technological developments across the two fields. Detailed descriptions of novel quantum mechanical effects such as quantum current oscillations, the metal-to-semiconductor transition and the transition from classical transistor to single-electron transistor operation are described in detail, in addition to real-world applications in the fields of nanoelectronics, biomedical sensing techniques, and advanced...

Silicon and Silicide Nanowires: Applications, Fabrication, and Properties

Silicon and Silicide Nanowires: Applications, Fabrication, and Properties
by Yu Huang (Editor), King-Ning Tu (Editor)


Nanoscale materials are showing great promise in various electronic, optoelectronic, and energy applications. Silicon (Si) has especially captured great attention as the leading material for microelectronic and nanoscale device applications. Recently, various silicides have garnered special attention for their pivotal role in Si device engineering and for the vast potential they possess in fields such as thermoelectricity and magnetism. The fundamental understanding of Si and silicide material processes at nanoscale plays a key role in achieving device structures and performance that meet real-world requirements and, therefore, demands investigation and exploration of nanoscale device applications. This book comprises the theoretical and experimental analysis of various properties of...

Nanowire Field Effect Transistors: Principles and Applications

Nanowire Field Effect Transistors: Principles and Applications
by Dae Mann Kim (Editor), Yoon-Ha Jeong (Editor)


This book covers the basic physics and electronics leading to the conceptual understanding of nanowire field effect transistors (NWFET) and its practical aspects. It discusses mainstream applications and emphasizes their basic concepts.

A Multi-Physics and Continuum Mechanics Approach of Lithiated Silicon Nanowires

A Multi-Physics and Continuum Mechanics Approach of Lithiated Silicon Nanowires
by Donald C Boone (Author)


This study considers the electromagnetic stresses and simulates the lithium insertion into a silicon nanowire. The resulting model uses magnetohydrodynamic theory to explain the two detrimental effects that could result during the lithiated silicon process: (1) The partial lithiation effects that are observed in some silicon nanowires under no volume expansion; (2) The excessive volume expansion that is observed after full lithium ion insertion with a resulting Cassini oval shaped silicon nanowire. Magnetic fields are introduced into this simulation via the electromagnetic term in order to introduce additional compressive stresses that slows down the lithiation process and results in a partially lithiated silicon nanowire under certain boundary conditions. Also, additional tensile...

One-Dimensional Superconductivity in Nanowires

One-Dimensional Superconductivity in Nanowires
by Fabio Altomare (Author), Albert M. Chang (Author)


The book introduces scientists and graduate students to superconductivity, and highlights the differences arising from the different dimensionality of the sample under study. It focuses on transport in one-dimensional superconductors, describing relevant theories with particular emphasis on experimental results. It closely relates these results to the emergence of various novel fabrication techniques. The book closes by discussing future perspectives, and the connection and relevance to other physical systems, including superfluidity, Bose-Einstein condensates, and possibly cosmic strings.

Nanowires: Building Blocks for Nanoscience and Nanotechnology (NanoScience and Technology)

Nanowires: Building Blocks for Nanoscience and Nanotechnology (NanoScience and Technology)
by Springer


This book provides a comprehensive summary of nanowire research in the past decade, from the nanowire synthesis, characterization, assembly, to the device applications. In particular, the developments of complex/modulated nanowire structures, the assembly of hierarchical nanowire arrays, and the applications in the fields of nanoelectronics, nanophotonics, quantum devices, nano-enabled energy, and nano-bio interfaces, are focused. Moreover, novel nanowire building blocks for the future/emerging nanoscience and nanotechnology are also discussed.Semiconducting nanowires represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of...

Nanoelectronics: Nanowires, Molecular Electronics, and Nanodevices

Nanoelectronics: Nanowires, Molecular Electronics, and Nanodevices
by Krzysztof Iniewski (Author)


The latest advances in nanoelectronics This definitive volume addresses the state of the art in nanoelectronics, covering nanowires, molecular electronics, and nanodevices. Written by global experts in the field, Nanoelectronics discusses cutting-edge techniques and emerging materials, such as carbon nanotubes and quantum dots. This pioneering work offers a comprehensive survey of nanofabrication options for use in next-generation technologies. Nanoelectronics covers: Electrical properties of metallic nanowires Electromigration defect nucleation in damascene copper interconnect lines Carbon nanotube interconnects in CMOS integrated circuits Printed organic electronics One-dimensional nanostructure-enabled chemical sensing Cross-section fabrication and analysis of nanoscale device...

Nanowires and Nanobelts: Materials, Properties and Devices: Volume 2: Nanowires and Nanobelts of Functional Materials

Nanowires and Nanobelts: Materials, Properties and Devices: Volume 2: Nanowires and Nanobelts of Functional Materials
by Springer


Volume 2, Nanowires and Nanobelts of Functional Materials covers a wide range of materials systems, from functional oxides (such as ZnO, SnO2, and In2O3), structural ceramics (such as MgO, SiO2 and Al2O3), composite materials (such as Si-Ge, SiC- SiO2), to polymers. This volume focuses on the synthesis, properties and applications of nanowires and nanobelts based on functional materials. Novel devices and applications made from functional oxide nanowires and nanobelts will be presented first, showing their unique properties and applications. The majority of the text will be devoted to the synthesis and properties of nanowires and nanobelts of functional oxides. Finally, sulphide nanowires, composite nanowires and polymer nanowires will be covered.

Nanotubes and Nanowires (Selected Topics in Electronics and Systems)

Nanotubes and Nanowires (Selected Topics in Electronics and Systems)
by Peter John Burke (Author), Peter John Burke (Editor)


The field of nanotubes and nanowires is evolving at a rapid pace, with many potential applications in electronics, optics, and sensors, to name a few. In this book, various prominent researchers summarize our current understanding of these new materials systems, as well as some of these potential applications. A snapshot of the state-of-the-art in the field of nanowires and nanotubes, the contributions give an instructive mix of experimental, theoretical, and visionary material to give the reader an indication of where the field is now, and where it is going.

Nanosensors for Chemical and Biological Applications: Sensing with Nanotubes, Nanowires and Nanoparticles (Woodhead Publishing Series in Electronic and Optical Materials)

Nanosensors for Chemical and Biological Applications: Sensing with Nanotubes, Nanowires and Nanoparticles (Woodhead Publishing Series in Electronic and Optical Materials)
by Kevin C. Honeychurch (Editor)


Nano-scale materials are proving attractive for a new generation of devices, due to their unique properties. They are used to create fast-responding sensors with good sensitivity and selectivity for the detection of chemical species and biological agents. Nanosensors for Chemical and Biological Applications provides an overview of developments brought about by the application of nanotechnology for both chemical and biological sensor development. Part one addresses electrochemical nanosensors and their applications for enhanced biomedical sensing, including blood glucose and trace metal ion analysis. Part two goes on to discuss spectrographic nanosensors, with chapters on the use of nanoparticle sensors for biochemical and environmental sensing and other techniques for detecting...

© 2017 BrightSurf.com