Science Current Events | Science News | Brightsurf.com
 

New harmonized test protocols for PEM fuel cells in hydrogen vehicles

March 29, 2016

A lack of standards for testing polymer electrolyte membrane (PEM) fuel cells - the most attractive type of fuel cells for powering vehicles - has hampered objective comparative assessment of their performance and durability under operating conditions and hence of their technological progress. By proposing a test methodology including a set of representative operating conditions and getting European industry and research stakeholders to agree on it, the JRC has helped fill the gap.

The resulting harmonised test protocols allow the evaluation of the performance and durability of PEM fuel cells by focusing on the membrane-electrode assemblies (MEA), which constitute the heart of a fuel cell.

Fuel cells generate electricity by combining hydrogen fuel and an oxidant (oxygen or air) electrochemically in a more energy-efficient and environment-friendly way than todayÂ's modern combustion-based power technologies. However, technological progress to enhance performance and durability and reduce costs is still required. Among all fuel cell types the polymer electrolyte membrane (PEM) fuel cells are the most promising for powering vehicles due to their high energy density, low operating temperature and high efficiency.

The protocols, described in a recent JRC report, were established through a sustained cooperation with industry and research organisations participating in R&I projects for automotive applications, funded by the European Fuel Cell and Hydrogen Joint Undertaking (FCH-JU). The latter is an industry-led public private partnership (PPP) supporting the technological development of fuel cell and hydrogen energy technologies in Europe. The report specifies reference operating conditions and boundaries within which a cell is expected to operate. The harmonised test methodology enables investigating the influence of individual operating parameters on MEA performance, including when subjected to more challenging boundary conditions also called "stressor conditions". The latter cover load cycling, mechanical effects, fuel and air contaminants (impurities) and environmental conditions.

The use of the protocols will facilitate a factual assessment of the technology status achieved by the relevant FCH-JU funded projects, thereby allowing improved target-setting, monitoring of progress, and evaluating the return-on-investment of public funding of R&I activities on automotive fuel cells.

The US Department of Energy (DoE) Fuel Cell Technology Office and Asian car component manufacturers have expressed interest for the protocols.

###

Background: This research contributes to the objectives of the Commission's Energy Union strategy, speeding up the decarbonisation in the transport sector, its progressive switch to alternative fuels and the integration of the energy and transport systems.

European Commission Joint Research Centre


Related Fuel Cells Current Events and Fuel Cells News Articles


Tiny probe could produce big improvements in batteries and fuel cells
A team of American and Chinese researchers has developed a new tool that could aid in the quest for better batteries and fuel cells.

Proton-conducting material found in electrosensory organs of sharks
Sharks, skates, and rays can detect very weak electric fields produced by prey and other animals using an array of unusual organs known as the ampullae of Lorenzini. Exactly how these electrosensory organs work has remained a mystery, but a new study has revealed an important clue that may have implications for other fields of research.

Speedy ion conduction in solid electrolytes clears road for advanced energy devices
In a rechargeable battery, the electrolyte transports lithium ions from the negative to the positive electrode during discharging.

Hybrid system could cut coal-plant emissions in half
Most of the world's nations have agreed to make substantial reductions in their greenhouse gas emissions, but achieving these goals is still a considerable technological, economic, and political challenge.

How to make metal alloys that stand up to hydrogen
High-tech metal alloys are widely used in important materials such as the cladding that protects the fuel inside a nuclear reactor.

Penn chemists lay groundwork for countless new, cleaner uses of methane
Methane is the world's most abundant hydrocarbon. It's the major component of natural gas and shale gas and, when burned, is an effective fuel.

Saving sunshine for a rainy day: New catalyst offers efficient storage of green energy
We can't control when the wind blows and when the sun shines, so finding efficient ways to store energy from alternative sources remains an urgent research problem.

Pumping up energy storage with metal oxides
Material scientists at Lawrence Livermore National Laboratory have found certain metal oxides increase capacity and improve cycling performance in lithium-ion batteries.

Wrinkles and crumples make graphene better
Crumple a piece of paper and it's probably destined for the trash can, but new research shows that repeatedly crumpling sheets of the nanomaterial graphene can actually enhance some of its properties. In some cases, the more crumpled the better.

Carbon leads the way in clean energy
Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.
More Fuel Cells Current Events and Fuel Cells News Articles

Fuel Cell Fundamentals

Fuel Cell Fundamentals
by Ryan O'Hayre (Author), Suk-Won Cha (Author), Whitney Colella (Author), Fritz B. Prinz (Author)


A complete, up-to-date, introductory guide to fuel cell technology and application Fuel Cell Fundamentals provides a thorough introduction to the principles and practicalities behind fuel cell technology. Beginning with the underlying concepts, the discussion explores fuel cell thermodynamics, kinetics, transport, and modeling before moving into the application side with guidance on system types and design, performance, costs, and environmental impact. This new third edition has been updated with the latest technological advances and relevant calculations, and enhanced chapters on advanced fuel cell design and electrochemical and hydrogen energy systems. Worked problems, illustrations, and application examples throughout lend a real-world perspective, and end-of chapter review questions...

Build Your Own Fuel Cells

Build Your Own Fuel Cells
by Phillip Hurley (Author)


The technology of the future is here today - and now available to the non-engineer! Build Your Own Fuel Cells contains complete, easy to understand illustrated instructions for building several types of proton exchange membrane (PEM) fuel cells - and, templates for 6 PEM fuel cell types, including convection fuel cells and oxygen-hydrogen fuel cells, in both single slice and stacks. Low tech/high quality Two different low-tech fuel cell construction methods are covered: one requires a bandsaw and drill press, and the other only a few hand tools. Anyone with minimum skills and tools will be able to produce high quality fuel cells from readily obtainable materials - contact info for materials suppliers is included. Electrolyzers and MEAs Build Your Own Fuel Cells includes a detailed...

Fuel Cell Fundamentals

Fuel Cell Fundamentals
by Ryan O'Hayre (Author), Suk-Won Cha (Author), Whitney Colella (Author), Fritz B. Prinz (Author)


As the search for alternative fuels heats up, no topic is hotter than fuel cells. Filling a glaring gap in the literature, Fuel Cell Fundamentals, Second Edition gives advanced undergraduate and beginning level graduate students an important introduction to the basic science and engineering behind fuel cell technology. Emphasizing the foundational scientific principles that apply to any fuel cell type or technology, the text provides straightforward descriptions of how fuel cells work, why they offer the potential for high efficiency, and how their unique advantages can best be used. Designed to be accessible to fuel cell beginners, the text is suitable for any engineering or science major with a background in calculus, basic physics, and elementary thermodynamics. This new edition...

Build A Solar Hydrogen Fuel Cell System

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)


Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology. Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including: ESPMs (Electrolyzer Specific Photovoltaic Modules) – 40 watt solar panels designed specifically to run electrolyzers efficiently; a 40-80 watt electrolyzer for intermittant power from renewable energy sources such as solar and wind; and, a 6-12...

Fuel Cell Handbook (Fifth Edition)

Fuel Cell Handbook (Fifth Edition)
by U.S. Department Of Energy (Author)


Fuel cells are an important technology for a potentially wide variety of applications including micropower, auxiliary power, transportation power, stationary power for buildings and other distributed generation applications, and central power. These applications will be in a large number of industries worldwide. This edition of the Fuel Cell Handbook is more comprehensive than previous versions in that it includes several changes. First, calculation examples for fuel cells are included for the wide variety of possible applications. This includes transportation and auxiliary power applications for the first time. In addition, the handbook includes a separate section on alkaline fuel cells. The intermediate temperature solid-state fuel cell section is being developed. In this edition,...

Fuel Cell Systems Explained (Second Edition)

Fuel Cell Systems Explained (Second Edition)
by James Larminie (Author), Andrew Dicks (Author)


Building on the success of the first edition Fuel Cell Systems Explained presents a balanced introduction to this growing area. "In summary, an altogether satisfying book that puts within its covers the academic tools necessary for explaining fuel cell systems on a multidisciplinary basis." Power Engineering Journal "An excellent book….well written and produced." Journal of Power and Energy Fully revised and updated, the second edition: Provides an essential guide to the principles, design and application of fuel cell systems. Includes full and updated coverage of fuel processing and hydrogen generation and storage systems. Presents a full and clear explanation of the operation of all the major fuel cell types, and an introduction to possible future technology, such as biological fuel...

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition (Power Electronics and Applications Series)

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition (Power Electronics and Applications Series)
by Mehrdad Ehsani (Author), Yimin Gao (Author), Ali Emadi (Author)


Air pollution, global warming, and the steady decrease in petroleum resources continue to stimulate interest in the development of safe, clean, and highly efficient transportation. Building on the foundation of the bestselling first edition, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition updates and expands its detailed coverage of the vehicle technologies that offer the most promising solutions to these issues affecting the automotive industry. Proven as a useful in-depth resource and comprehensive reference for modern automotive systems engineers, students, and researchers, this book speaks from the perspective of the overall drive train system and not just its individual components. New to the second edition: A case study...

Fuel Cell Handbook

Fuel Cell Handbook
by National Energy Technology Laboratory (Author), U.S. Department of Energy (Author)


Fuel cells are an important technology for a potentially wide variety of applications including micropower, auxiliary power, transportation power, stationary power for buildings and other distributed generation applications, and central power. These applications will be in a large number of industries worldwide. This edition of the Fuel Cell Handbook is more comprehensive than previous versions in that it includes several changes. First, calculation examples for fuel cells are included for the wide variety of possible applications. This includes transportation and auxiliary power applications for the first time. In addition, the handbook includes a separate section on alkaline fuel cells. The intermediate temperature solid-state fuel cell section is being developed. In this...

Hydrogen Fuel Cell Cars

Hydrogen Fuel Cell Cars


A Straight Forward Guide To Hydrogen as Fuel for Motor Vehicles, Boost Kits, Fuel Saver, Using Byproducts, How to Build a Hydrogen Fuel Cell and Its Advantages


Fuel Cell Projects for the Evil Genius

Fuel Cell Projects for the Evil Genius
by McGraw-Hill Education TAB


FUEL YOUR EVIL URGES WHILE YOU BUILD GREEN ENERGY PROJECTS! Go green as you amass power! Fuel Cell Projects for the Evil Genius broadens your knowledge of this important, rapidly developing technology and shows you how to build practical, environmentally conscious projects using the three most popular and widely accessible fuel cells! In Fuel Cell Projects for the Evil Genius, high-tech guru Gavin Harper gives you everything you need to conduct practical experiments and build energizing fuel cell projects. You'll find complete, easy-to-follow plans that feature clear diagrams and schematics, as well as: Instructions for fascinating sustainable energy projects, complete with 180 how-to illustrations Explanations of how fuel cells work and why the hydrogen economy will impact our lives in...

© 2017 BrightSurf.com