Science Current Events | Science News | Brightsurf.com
 

Technique could help identify patients who would suffer chemo-induced heart damage

April 19, 2016

Cancer patients who receive a particular type of chemotherapy called doxorubicin run a risk of sustaining severe, lasting heart damage. But it is not possible to predict who is likely to experience this serious side effect. It is also unknown exactly how the drug damages heart muscle.

Now, researchers at the Stanford University School of Medicine have shown that heart muscle cells made from the skin cells of breast cancer patients who suffered cardiac side effects after receiving doxorubicin respond more adversely to the drug than cells made from patients who did not.

These cells provide researchers with a sorely needed platform to study the effects of doxorubicin exposure on human heart muscle cells, and may allow them to one day predict which patients should avoid the drug. Until now, researchers have relied primarily on animal models to investigate the phenomenon because heart muscle tissue is difficult to obtain from living patients.

"In the past, we've tried to model this doxorubicin toxicity in mice by exposing them to the drug and then removing the heart for study," said Joseph Wu, MD, PhD, director of the Stanford Cardiovascular Institute and a professor of cardiovascular medicine and radiology. "Now we can continue our studies in human cells with iPS-derived heart muscle cells from real patients. One day we may even be able to predict who is likely to get into trouble."

Wu is the senior author of the research, which will be published online April 18 in Nature Medicine. Former Stanford Cardiovascular Institute instructor Paul Burridge, PhD, is the lead author of the study. Burridge is now an assistant professor of pharmacology at Northwestern University.

The research relies on induced pluripotent stem cells, or iPS cells, derived from patients' own skin cells to make heart muscle cells. IPS cells are stem cells that can be coaxed to develop into nearly any tissue in the body. The technique gives researchers access to a variety of human cell types, such as brain and heart muscle cells, that are typically difficult to obtain for study.

Toxic side effect

About 8 percent of cancer patients treated with doxorubicin will experience heart damage, which can be severe enough to require a heart transplant. The failing heart function is due to the death of the cells in the organ's muscle tissue. This dilemma places patients in a medical Catch-22, having been cured from cancer but later suffering heart disease as a result of the chemotherapy. Advanced prediction of which patients are susceptible to doxorubicin's heart damage would greatly benefit cancer patients.

For the study, the researchers collected skin cells from 12 women, eight of whom had been treated at Stanford for breast cancer. Four of the eight had experienced heart damage in response to the drug while the other four did not. Another group of four women served as healthy control subjects. The researchers used the study participants' own skin cells to create iPS cells, which they then grew in the lab into heart muscle cells.

"We found that cells from the patients who had experienced doxorubicin toxicity responded more negatively to the presence of the drug," said Burridge. "They beat more irregularly in response to increased levels of doxorubicin, and we saw a significant increase in cell death after 72 hours of exposure to the drug when we compared those cells to cells from healthy controls or patients who didn't have heart damage."

Some researchers have proposed that the particular sensitivity of heart muscle cells to the drug might be because they have more mitochondria than other cells in the body. Mitochondria serve as a cell's energy factories, and continuously beating heart muscle cells need a lot of energy throughout their lifetimes. But they also produce small amounts of damaging molecules called reactive oxygen species as a byproduct of this energy-making process, and these molecules can harm cell membranes and DNA.

Mitochondrial mystery

The researchers found that the doxorubicin-sensitive cells experienced higher levels of DNA damage and of reactive oxygen species in the presence of doxorubicin. These cells were also significantly more likely than cells from healthy controls or from patients who didn't sustain heart damage to initiate a program of cellular suicide, which can be triggered by damage to the mitochondrial membrane. But the researchers made another telling discovery.

"We had assumed, based on our hypothesis, that the doxorubicin-sensitive cells would experience a more severe loss in mitochondrial capacity," said Burridge. "And that was true. But we also observed that cells made from patients who had experienced damage appeared to have slightly different baseline mitochondrial function even before the drug was applied."

It is possible that heart muscle cells from these patients are fundamentally different than others, perhaps due to genetic variation, according to the researchers. This genetic difference could cause their heart muscle cells to respond negatively to doxorubicin.

The next step is to learn more about what causes the sensitivity, which the Stanford researchers hope to do by combining their studies of the iPS-derived cells with existing genome-wide association studies attempting to pinpoint DNA mutations that might cause compromised heart function.

"Doxorubicin and other similar drugs are used to treat many types of cancers, including lymphomas and leukemias," said Melinda Telli, MD, assistant professor of oncology at Stanford. Telli is a co-author of the study and helped recruit breast cancer patients for inclusion in the study. "But we don't want to cure any of these patients of their cancers only to leave them with another life-threatening problem."

The work is an example of Stanford Medicine's focus on precision health, the goal of which is to anticipate and prevent disease in the healthy and precisely diagnose and treat disease in the ill.

###

Other Stanford co-authors are postdoctoral scholars Yong Li, PhD, Haodi Wu, PhD, Sang-Ging Ong, PhD, Alexandra Holmstrom, PhD, and Alex Chang, PhD; instructors Elena Matsa, PhD, Antje Ebert, PhD, and Michael Coronado, PhD; graduate student Arun Sharma; assistant professor of cardiovascular medicine Joshua Knowles, MD, PhD; associate professor of medicine Ronald Witteles, MD; professor of microbiology and immunology Helen Blau, PhD; professor of pediatric cardiology Daniel Bernstein, MD; and professor of bioengineering, of genetics and of medicine Russ Altman, MD, PhD.

The research was funded by the National Institutes of Health (grants K99/R00HL121177, R21HL123655, R01LM05652, R01GM102365, R24GM61374, R01HL123968, R01HL126527, R01HL128170 and R01HL130020), the California Institute of Regenerative Medicine, the American Heart Association, a Dixon Translational Research Grant Young Investigator Award, the Muscular Dystrophy Association and the Burroughs Wellcome Fund.

The Stanford Department of Medicine and the Stanford Cardiovascular Institute also supported the work.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://med.stanford.edu.

Stanford University Medical Center


Related Heart Muscle Current Events and Heart Muscle News Articles


New study uncovers mechanisms underlying how diabetes damages the heart
Cardiac complications are the number one cause of death among diabetics. Now a team of scientists has uncovered a molecular mechanism involved in a common form of heart damage found in people with diabetes.

Mouse study links heart regeneration to telomere length
Researchers at the Spanish National Center for Cardiovascular Research have discovered that the ends of heart muscle cell chromosomes rapidly erode after birth, limiting the cells' ability to proliferate and replace damaged heart tissue.

Scientists find what might be responsible for slow heart function under general anesthesia
Anesthesia is used every day, but surprisingly little is known about one of its most dangerous side effects--depressed heart function.

Researchers identify enzyme link between excessive heart muscle growth, cancer growth
UT Southwestern Medical Center cardiology researchers have identified molecular ties between the growth of cancer cells and heart cells that suggest existing cancer drugs may be able to help those with enlarged heart cells -- a condition that can lead to heart attacks and stroke.

Respirator mask reduces effects of pollution on the heart
The use of a respiratory filter mask, a common practice in China and Japan, among other countries, helps minimize the impact of pollution on people with heart failure during rush-hour traffic in cities such as SĂ£o Paulo, Brazil.

Duke study uncovers genetic elements that drive regeneration
If you trace our evolutionary tree way back to its roots -- long before the shedding of gills or the development of opposable thumbs -- you will likely find a common ancestor with the amazing ability to regenerate lost body parts.

Heart failure patients have improved outcomes following investigational stem cell treatment
An investigational stem cell therapy derived from patients' own blood marrow significantly improved outcomes in patients with severe heart failure, according to a study from the Cedars-Sinai Heart Institute.

Trial drug ineffective in preventing contrast-induced kidney injury
Patients treated with CMX-2043--an investigational drug that has previously shown some ability to protect heart muscle from damage during stenting--saw no improved protection in their kidneys compared to placebo, according to research presented at the American College of Cardiology's 65th Annual Scientific Session.

Stem cell therapy improves outcomes in severe heart failure
A new stem cell therapy significantly improved long-term health outcomes in patients with severe and end-stage heart failure in a study presented at the American College of Cardiology's 65th Annual Scientific Session.

No improvements with losmapimod after heart attack
Patients taking losmapimod, an anti-inflammatory drug currently being developed, for 12 weeks following a heart attack did not show improvements in the trial's primary endpoint, the rate of cardiovascular death, subsequent heart attack or urgent coronary revascularization, which includes placement of a stent or coronary artery bypass surgery, according to research presented at the American College of Cardiology's 65th Annual Scientific Session.
More Heart Muscle Current Events and Heart Muscle News Articles

Your Heart Is a Muscle the Size of a Fist

Your Heart Is a Muscle the Size of a Fist
by Sunil Yapa (Author)


A Finalist for the PEN/ Faulkner Award

n Amazon Best Book of the Year

A Washington Post Notable Book

A Barnes & Noble Discover Pick

One of Bustle's "Most Important Books of 2016"

Named Most Anticipated Book of the Year in Wall Street Journal, Entertainment Weekly, TIME, Huffington Post, The Chicago Tribune, BuzzFeed, Houston Chronicle, San Francisco Chronicle, Orlando Sentinel, Ploughshares, Bustle, TheMillions, BookRiot, The Oregonian, The San Diego Union-Tribune, River City Reading, Indigo

Grief-stricken after his mother's death and three years of wandering the world, Victor is longing for a family and a sense of purpose. He believes he's found both when he returns home to Seattle only to be swept up in a massive protest. With young,...

Quarter Mile Hearts (An American Muscle Novel Book 1)

Quarter Mile Hearts (An American Muscle Novel Book 1)
by J Hodge


Following an accident injuring her dad, twenty-four year old Leigh Storm returns home to the town she was once so desperate to escape.
It is only a matter of hours before she runs into Max 'Manwhore' Morgan. Dark eyed and dangerous to her heart, he is the very last person she wants to see. It might have been four years since she saw him last, but there's no denying the chemistry between them is as potent as ever. Max makes it clear he isn't about to let her run again, even if he is the one thing Leigh vowed to herself she would never date: a street racer.
After racing tore apart her own family and left a path of destruction in its wake, Leigh decided long ago that it is not the life she wants for herself. But when a wager gone wrong threatens her dad's livelihood, Leigh must go...

Muscle And Heart - Fort McMurray Fire Stories

Muscle And Heart - Fort McMurray Fire Stories
by Dee Bentley Books (Author)


Top News Story 2016. Largest Evacuation in Alberta History. Costliest Disaster in Canada. On May 3, 2016 a wildfire ravaged the city of Fort McMurray, forcing 90,000 people to flee. Read accounts from emergency responders and evacuees. Riveting first person accounts, plus information about events before, during, and after, including statistics and maps. A must read for anyone interested in a broad overview, yet personal stories. Co-Authors: Dee Bentley, Alisa Caswell, Trish Collins, JD Hunter, Katherine Giesbrecht, Jonathan Gillies, Michael Hill, Christina MacKay, Cyndy Pickersgill, Wina Reid, Diane Schuldt-Zundel, Danelle Wilson, Thomas Zimmermann. Proceeds used for Wildfire Recovery.

My Bodyworks: Songs About Your Bones, Muscles, Heart And More!

My Bodyworks: Songs About Your Bones, Muscles, Heart And More!
by Jane Schoenberg (Author), Steven Schoenberg (Author), Cynthia Fisher (Illustrator)


Learning about the body just got more exciting! Young children will discover how their bodies work when they read and sing along with fun and fact-filled songs. How many bones are in each of your feet? What are the five senses? Where is the gluteus maximus? Why do we pass gas? Find out in this engaging book and 12-song CD set with its diverse array of musical styles that promises to get the whole family rocking.

Forbidden Love (Whatever it Takes Book 2)

Forbidden Love (Whatever it Takes Book 2)


Carter--stronger, faster and more dominant than his peers--was born to be an alpha. But nature has a cruel habit of playing tricks, because Carter isn't just alpha material, he's also one of the rare werewolves whose attraction is towards humans instead of other werewolves.
There's no chance his pack would accept him if they knew.
Werewolves who want humans are broken, and no sane pack would suffer one in their midst--let alone allow one to be their alpha.

So Carter keeps his head down and focuses on his career, keeping his sexual encounters fleeting, impersonal and as far away from the pack as possible. He's unhappy and lonely, but it's better than risking his life with the pack.

Then he meets John. Human, carefree, and utterly magnetic, Carter can't help...

Hearts of Fire; Veins of Ice

Hearts of Fire; Veins of Ice


Hockey bad boy Leo “the Lion” has just had his green card pulled. Management decides the only way to keep him in the US is to find him a bride.

Sophia, office good girl by day, and struggling law student by night, has enough to worry about with her aging mom and her finances going down in flames. She doesn’t want to be a make-believe wife to a guy who has hot and cold running women.

Leo makes her an offer she can’t ignore, which is handy since she can’t ignore that face and that body either. But Sophia has news of her own that will change both their lives forever.

Whatever it Takes

Whatever it Takes


Owen
Owen Olsen needs a familiar. His magic is unbound, pure, and utterly vulnerable to the many witcheaters roaming the world just looking for a tasty little morsel like Owen to swallow up whole. Only bonding with a familiar will make him safe. But no matter how many times Owen performs the ritual to summon an animal to be his servant, guardian, and protector, it just doesn't work.

Owen’s grandmother assures him it just takes time—that his familiar will find him—but time is the one thing Owen doesn’t have. Every minute of every day is another chance for a witcheater to hunt him down, tear down his shields, and eat him, and the stress and fear are killing him.

Then he meets Luke Wolfman.


Luke
Luke Wolfman is a werewolf in need of a...

Evan's Alphas: Book 2

Evan's Alphas: Book 2


Having decided to make omega rights activism his new career, Chad jumps in head first... though not everyone appreciates his efforts.

***

“Who is your alpha?” Peter asks, walking closer. Chad takes an involuntary step back, Peter’s word infused with the full authority of his dominance. It feels like he can’t breathe.

“You are,” Chad says, forcing the words out. Peter grins, proud and possessive.

“And are you going to be good for your alpha?”

Peter grabs Chad’s chin, tilting his head up, squeezing Chad’s cheeks as they stand chest to chest. Chad tries to nod, too overcome to speak, but Peter’s hold on his chin prevents it.

“Yes, alpha,” he says, the words coming out like a moan.

Your Heart is a Muscle the Size of a Fist

Your Heart is a Muscle the Size of a Fist
by Sunil Yapa (Author)


A heart-stopping debut about protest and riot . . .1999. Victor, homeless after a family tragedy, finds himself pounding the streets of Seattle with little meaning or purpose. He is the estranged son of the police chief of the city, and today his father is in charge of one of the largest protests in the history of Western democracy. But in a matter of hours reality will become a nightmare. Hordes of protesters - from all sections of society - will test the patience of the city's police force, and lives will be altered forever: two armed police officers will struggle to keep calm amid the threat of violence; a protester with a murderous past will make an unforgivable mistake; and a delegate from Sri Lanka will do whatever it takes to make it through the crowd to a meeting - a meeting that...

Muscle Up: How Strength Training Beats Obesity, Cancer, and Heart Disease, and Why Everyone Should Do It

Muscle Up: How Strength Training Beats Obesity, Cancer, and Heart Disease, and Why Everyone Should Do It
by P. D. Mangan (Author)


Over the past few decades, mainstream health experts have universally recommended aerobic exercise as a uniquely health-promoting activity. Yet now, Americans are fatter than ever. Aerobic exercise not only has a very poor record at fat loss, it might even cause weight gain. Strength training - also known as weightlifting or resistance training - has much greater power to cause fat loss. What's more, since it builds muscle mass, strength training has huge advantages over aerobic exercise when it comes to improving health. Greater muscle strength means less cancer and heart disease, besides smaller waist size and less body fat. Aerobic exercise, while it can increase cardiovascular fitness, does next to nothing to combat two of the central maladies of aging: sarcopenia (loss of...

© 2017 BrightSurf.com