Science Current Events | Science News | Brightsurf.com
 

Speedy ion conduction in solid electrolytes clears road for advanced energy devices

May 09, 2016

In a rechargeable battery, the electrolyte transports lithium ions from the negative to the positive electrode during discharging. The path of ionic flow reverses during recharging. The organic liquid electrolytes in commercial lithium-ion batteries are flammable and subject to leakage, making their large-scale application potentially problematic. Solid electrolytes, in contrast, overcome these challenges, but their ionic conductivity is typically low.

Now, a team led by the Department of Energy's Oak Ridge National Laboratory has used state-of-the-art microscopy to identify a previously undetected feature, about 5 billionths of a meter (nanometers) wide, in a solid electrolyte. The work experimentally verifies the importance of that feature to fast ion transport, and corroborates the observations with theory. The new mechanism the researchers report in Advanced Energy Materials points out a new strategy for the design of highly conductive solid electrolytes.

"The solid electrolyte is one of the most important factors in enabling safe, high-power, high-energy, solid-state batteries," said first author Cheng Ma of ORNL, who conducted most of the study's experiments. "But currently the low conductivity has limited its applications."

ORNL's Miaofang Chi, the senior author, said, "Our work is basic science focused on how we can facilitate ion transport in solids. It is important to the design of fast ion conductors, not only for batteries, but also for other energy devices." These include supercapacitors and fuel cells.

To directly observe the atomic arrangement in the solid electrolyte, the researchers used aberration-corrected scanning transmission electron microscopy to send electrons through a sample. To observe an extremely small feature in a three-dimensional (3D) material with a method that essentially provides a two-dimensional (2D) projection, they needed a sample of extraordinary thinness. To prepare one, they relied on comprehensive materials processing and characterization capabilities of the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL.

"Usually the transmission electron microscopy specimen is 20 nanometers thick, but Ma developed a method to make the specimen ultra-thin (approximately 5 nanometers)," Chi said. "That was the key because such a thickness is comparable to the size of the hidden feature we finally resolved."

The researchers examined a prototype system called LLTO, shorthand for its lithium, lanthanum, titanium and oxygen building blocks. LLTO possesses the highest bulk conductivity among oxide systems.

In this material, lithium ions move fastest in the planar 2D pathways resulting from alternating stacks of atomic layers rich in either lanthanum or lithium. The ORNL-led team was the first to see that, without hurting this superior 2D transport, tiny domains, or fine features approximately 5 to 10 nanometers wide, throughout the 3D material provided more directions in which lithium ions could move. The domains looked like sets of shelves stacked at right angles to others. The smaller the shelves, the easier it was for ions to flow in the direction of an applied current.

ORNL's Yongqiang Cheng and Bobby Sumpter performed molecular dynamics simulations that corroborated the experimental findings.

Previously, scientists looked at the atomic structure of the simplest repeating unit of a crystal--called a unit cell--and rearranged its atoms or introduced different elements to see how they could facilitate ion transport. Unit cells are typically less than 1 nanometer wide. In the material that the ORNL scientists studied for this paper, the unit cell is nearly half a nanometer. The team's unexpected finding--that fine features, of only a few nanometers and traversing a few unit cells, can maximize the number of ionic transport pathways--provides new perspective.

"The finding adds a new criterion," Chi said. "This largely overlooked length scale could be the key to fast ionic conduction."

Researchers will need to consider phenomena on the order of several nanometers when designing materials for fast ion conduction.

Ma agreed. "The prototype material has high ionic conductivity because not only does it maintain unit-cell structure, but also it adds this fine feature, which underpins 3D pathways," Ma said. "We're not saying that we shouldn't be looking at the unit-cell scale. We're saying that in addition to the unit cell scale, we should also be looking at the scale of several unit cells. Sometimes that outweighs the importance of one unit cell."

For several decades, when researchers had no explanation for certain material behaviors, they speculated phenomena transcending one unit cell could be at play. But they never saw evidence. "This is the first time we proved it experimentally," Ma said. "This is a direct observation, so it is the most solid evidence."

The title of the paper is "Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li-ion Batteries."

###

The DOE Office of Science supported electron microscopy, theory calculations and electrochemical analysis. Work was performed at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL. Researchers at Tsinghua University in China participated in materials synthesis and electrochemical analysis.

UT-Battelle manages ORNL for DOE's Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://www.science.energy.gov

DOE/Oak Ridge National Laboratory


Related Lithium Ions Current Events and Lithium Ions News Articles


Unexpected discovery leads to a better battery
An unexpected discovery has led to a rechargeable battery that's as inexpensive as conventional car batteries, but has a much higher energy density.

From allergens to anodes: Pollen derived battery electrodes
Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

Clay makes better high-temp batteries
A unique combination of materials developed at Rice University, including a clay-based electrolyte, may solve a problem for rechargeable lithium-ion batteries destined for harsh environments.

Using hydrogen to enhance lithium ion batteries
Lawrence Livermore National Laboratory scientists have found that lithium ion batteries operate longer and faster when their electrodes are treated with hydrogen.

Simple mathematical formula models lithium-ion battery aging
Hybrid electric vehicles, cell phones, digital cameras, and the Mars Curiosity rover are just a few of the many devices that use rechargeable lithium-ion batteries. Now a team of Penn State researchers has a simple mathematical formula to predict what factors most influence lithium-ion battery aging.

Nano-mechanical study offers new assessment of silicon for next-gen batteries
A detailed nano-mechanical study of mechanical degradation processes in silicon structures containing varying levels of lithium ions offers good news for researchers attempting to develop reliable next-generation rechargeable batteries using silicon-based electrodes.

Key to quick battery charging time
University of Tokyo researchers have discovered the structure and transport properties of the "intermediate state" in lithium-ion batteries - key to understanding the mechanisms of charge and discharge in rechargeable batteries.

Turn that defect upside down
Most people see defects as flaws. A few Michigan Technological University researchers, however, see them as opportunities.

Beyond the lithium ion -- a significant step toward a better performing battery
The race is on around the world as scientists strive to develop a new generation of batteries that can perform beyond the limits of the current lithium-ion based battery.

Actual dating requires calibration down to the last ion
Thermoluminescence is used extensively in archaeology and the earth sciences to date artefacts and rocks. When exposed to radiation quartz, a material found in nature, emits light proportional to the energy it absorbs.
More Lithium Ions Current Events and Lithium Ions News Articles

Kupfer- und Eisenoxide als Konversions-Elektrodenmaterialien fuer Lithium-Ionen-Batterien: Thermodynamische und Elektrochemische Untersuchungen (German Edition)

Kupfer- und Eisenoxide als Konversions-Elektrodenmaterialien fuer Lithium-Ionen-Batterien: Thermodynamische und Elektrochemische Untersuchungen (German Edition)
by Maren Lepple (Author)


Konversionselektroden sind vielversprechende Elektrodenmaterialien fuer zukuenftige Lithium-Ionen-Batterien, da sie sehr hohe spezifische Kapazitaeten im Vergleich zu Interkalationselektroden aufweisen. In dieser Arbeit wird ein thermodynamischer Ansatz gewaehlt, um den elektrochemischen Prozess von Konversions-Elektroden anhand der Modell-Systeme Li-Cu-O und Li-Fe-O zu beleuchten. Mit den konsistenten thermodynamischen Beschreibungen koennen elektrochemische Eigenschaften berechnet werden.

Linden's Handbook of Batteries, 4th Edition

Linden's Handbook of Batteries, 4th Edition
by Thomas Reddy (Author)


The most complete and up-to-date guide to battery technology and selection Thoroughly revised throughout, Linden's Handbook of Batteries, Fourth Editions provides authoritative coverage of the characteristics, properties, and performance of every major battery type. New information on emerging battery systems and their applications is included in this definitive volume. International experts offer unparalleled technical guidance on using leading-edge technologies, materials, and methods in new designs and products, and selecting the most suitable battery for a particular application. All of the in-depth data you need is contained in this comprehensive resource. The book will be useful to graduate students, battery researchers, applications engineers, and all others interested in the...

Physically based Impedance Modelling of Lithium-Ion Cells (Schriften des Instituts fuer Werkstoffe der Elektrotechnik, Karlsruher Institut fuer ... Werkstoffe der Elektrotechnik) (Volume 27)

Physically based Impedance Modelling of Lithium-Ion Cells (Schriften des Instituts fuer Werkstoffe der Elektrotechnik, Karlsruher Institut fuer ... Werkstoffe der Elektrotechnik) (Volume 27)
by Joerg Illig (Author)


In this book, a new procedure to analyze lithium-ion cells is introduced. The cells are disassembled to analyze their components in experimental cell housings. Then, Electrochemical Impedance Spectroscopy, time domain measurements and the Distribution function of Relaxation Times are applied to obtain a deep understanding of the relevant loss processes. This procedure yields a notable surplus of information about the electrode contributions to the overall internal resistance of the cell.

Brittle Matrix Composites: Influence of alkali silica reaction on the chemistry of pore solutions in mortars with and without lithium ions

Brittle Matrix Composites: Influence of alkali silica reaction on the chemistry of pore solutions in mortars with and without lithium ions
by Woodhead Publishing


This paper presents the results of the investigation of the chemistry of pore solutions of mortars containing both reactive and non-reactive aggregate. The effects of lithium ions (Li+) on chemical compositions of the pore solutions were also explored. In order to accelerate the A SR, all experiments were performed at 55°C. The compositions of the pore solution were measured at short intervals for the period of up to 120 days. The results showed clear difference between the composition of the pore solution of the mortar with non-reactive aggregate (control mortar) and the mortar containing reactive aggregate. The concentrations of Na+, K+ and OH- ions in the reactive systems without Li+ ions continuously decreased until they reached certain threshold level at which point they stabilized....

Les batteries lithium-ions: Formulation de l'électrolyte (Omn.Univ.Europ.) (French Edition)

Les batteries lithium-ions: Formulation de l'électrolyte (Omn.Univ.Europ.) (French Edition)
by Alexandre CHAGNES (Author)


L’approvisionnement et la gestion de l’énergie sont plus que jamais au centre de nos préoccupations avec l’épuisement des réserves de pétrole et la volonté de réduire les émissions de CO2. Ainsi, un des principaux défis des prochaines décennies est sans aucun doute le développement de nouvelles technologies pour le stockage électrochimique de l’énergie. De nombreux espoirs reposent sur les accumulateurs lithium-ions qui apparaissent comme étant à court terme le meilleur choix pour les véhicules électriques. Dans cet ouvrage, après une présentation des différentes familles d'accumulateurs et des phénomènes physicochimiques et éléctrochimiques prenant place dans les batteries lithium-ions, nous nous sommes focalisés sur la ...

Die Lithium-Ionen-Batterie - Energiespeicher der Zukunft: Elektrochemische Untersuchungen von Elektrolyten und Elektroden und die Entwicklung einer ... Quarzmikrowaage (German Edition)

Die Lithium-Ionen-Batterie - Energiespeicher der Zukunft: Elektrochemische Untersuchungen von Elektrolyten und Elektroden und die Entwicklung einer ... Quarzmikrowaage (German Edition)
by Dominik Johann Moosbauer (Author)


Lithium-Ionen-Batterien sind wichtige Energiespeicher, nicht nur für Kleinanwendungen, sondern auch als Hochleistungsbatterien wie in der Automobilindustrie. Um größere Leistungs- und Energiedichten zu erhalten, ist deren stetige Verbesserung Ziel der aktuellen Forschung und Entwicklung. In dieser Arbeit werden Untersuchungen an Elektrolyten und Elektroden vorgestellt, die zur Charakterisierung der einzelnen Komponenten benötigt werden. Es werden dazu Messungen zur elektrochemischen Stabilität und Leitfähigkeit von unterschiedlichen Lithiumsalzen durchgeführt und der Einfluss von ionischen Flüssigkeiten (ILs) als Additive auf einzelne Parameter untersucht. Löslichkeitsmessungen von Lithiumsalzen werden mittels einer neu entwickelten Methode mit der Quarzmikrowaage (QCM)...

Elektrochemisches Meßsystem mit Quarzmikrowaage: Aufbau und Test sowie Untersuchungen an Elektrolyten für Lithium-Ionen-Zellen (German Edition)

Elektrochemisches Meßsystem mit Quarzmikrowaage: Aufbau und Test sowie Untersuchungen an Elektrolyten für Lithium-Ionen-Zellen (German Edition)
by Michael Multerer (Author)


Der Autor stellt die komplette Eigenentwicklung eines elektrochemischen Meßplatzes mit Quarzmikrowaage dar. Die einzelnen Komponenten werden über USB an einen PC angebunden und mit einer einheitlichen Steuersoftware in LabVIEW sowie in LabWindows/CVI bedient. Die Schaltungstechnik des von Atmel AVR-Mikrocontrollern gesteuerten Potentiostaten / Galvanostaten, der in zwei Varianten aufgebaut wurde, ist detailliert dargestellt. Die Quarzmikrowaage arbeitet nach dem impedanz-scannenden Verfahren. Diese Technik wird häufig als zu kostspielig und langsam angesehen, was eindrucksvoll widerlegt werden kann. Durch die lineare Anpassung der frequenzabhängigen Impedanz an eine gebrochen rationale Funktion sind Datenraten von mehr als 1 Hz möglich. Informationen zum Zellaufbau und die Ergebnisse...

Verfahren zur Charakterisierung und Modellierung von Lithium-Ionen Zellen (Schriften des Instituts fuer Werkstoffe der Elektrotechnik, Karlsruher ... Elektrotechnik) (Volume 25) (German Edition)

Verfahren zur Charakterisierung und Modellierung von Lithium-Ionen Zellen (Schriften des Instituts fuer Werkstoffe der Elektrotechnik, Karlsruher ... Elektrotechnik) (Volume 25) (German Edition)
by Jan Philipp Schmidt (Author)


In dieser Arbeit werden neue Verfahren zur Charakterisierung des elektrochemischen und thermischen Verhaltens von Lithium-Ionen Zellen vorgestellt. Basierend auf diesen wird ein Modellansatz vorgestellt, der das Zellverhalten in vier Domaenen (statisch und dynamisch fuer elektrochemisches und thermisches Verhalten) getrennt abzubilden vermag. Hierdurch wird die Uebertragbarkeit auf verschiedenste Materialchemien, skalierbare Genauigkeit und eine automatisierbare Parametrierung moeglich.

Strategische Planung des Recyclings von Lithium-Ionen-Batterien aus Elektrofahrzeugen in Deutschland (Produktion und Logistik) (German Edition)

Strategische Planung des Recyclings von Lithium-Ionen-Batterien aus Elektrofahrzeugen in Deutschland (Produktion und Logistik) (German Edition)
by Claas Hoyer (Author)


Claas Hoyer untersucht Fragestellungen der Planung des Recyclings von Lithium-Ionen-Batterien aus Elektrofahrzeugen. Er stellt modellgestützte Analysen und Handlungsempfehlungen zur Erschließung wirtschaftlicher und ökologischer Potentiale und zur Einhaltung abfallrechtlicher Verpflichtungen bereit, die zur Beantwortung wesentlicher Fragen von politischen Entscheidungsträgern, potentiellen Investoren und Unternehmen der Batterie- und Automobilindustrie dienen.

Lithium-Eisenphosphat: Entwicklung von Kathoden für Lithium-Ionen Akkumulatoren (German Edition)

Lithium-Eisenphosphat: Entwicklung von Kathoden für Lithium-Ionen Akkumulatoren (German Edition)
by Johannes Paetzold (Author)


Im Rahmen dieser Arbeit wurden verschiedene Kathodenbeschichtungen mit dem LFP: „Life Power® P2“ der Firma Clariant AG entwickelt und deren Homogenität optimiert. Dazu wurden das Mischverfahren und die Dispergierung zur Verbesserung der Homogenität variiert. Ebenso wurde die Bedeutung des Feststoffgehaltes als Regulatorium untersucht, um einen gleichmäßigen Kathodenfilm mit höchstmöglicher Beladung zu erhalten. Anschließend wurde der Zellbau bis hin zur fertigen Vollzelle (Bicell) im Labormaßstab an industriell gefertigten Elektroden in Betrieb genommen und optimiert. Nach der Inbetriebnahme der Halbzellen wurden einige Experimente mit den industriell gefertigten Kathoden zum besseren Verständnis des elektrochemischen Verhaltens durchgeführt. Mechanische Probleme führten...

© 2017 BrightSurf.com