Science Current Events | Science News |

Cooling, time in the dark preserve perovskite solar power

May 18, 2016

A new study has found both the cause and a solution for the pesky tendency of perovskite solar cells to degrade in sunlight, a research breakthrough potentially removing one roadblock to commercialization for this promising technology. In a key finding, researchers at Los Alamos National Laboratory have found those degraded devices exhibit self-healing powers when given a little time in the dark. The team determined that photo-degradation in perovskite cells is a purely electronic process due to charge accumulation without chemical damage to the crystal structure and therefore can be reduced, while the cells' self-healing properties allow them to rebound in the dark.

"We can stabilize the device performance by controlling the environmental temperature," said Wanyi Nie, lead researcher on the paper published today in Nature Communications. "The degradation of the devices can be suppressed by simply lowering the temperature by few degrees, that is, from 25 degrees Celsius to 0 degrees Celsius."

The team, lead by Aditya Mohite from the Los Alamos "Light to Energy" team in the Material Synthesis and Integrated Devices group, is exploring organometallic halide semiconducting perovskite solar cells. They are promising because of their high power conversion efficiency (PCE) exceeding 20 percent and the low fabrication costs -- the perovskite material is synthesized via a low-temperature solution process. While achieving high PCE is important, the successful transition from a proof-of-concept experiment to actual market-viable photovoltaic technology requires the device to operate with stability under continuous sunlight, of course, and in the air and humidity of outdoor conditions.

The problem of stability against ambient air/humidity can be circumvented through encapsulation schemes, but the photo-stability of the perovskite-based devices remained an open question. As noted in the literature, these solar cells will undergo degradation with constant light soaking even when the device is under vacuum. Such degradation over time with solar illumination could undermine the commercialization of perovskite-based solar cells.

The new paper, "Light-activated photocurrent degradation and self-healing in perovskite solar cells" (DOI: 10.1038/ncomms11574), co-authored by Wanyi Nie and Jean-Christophe Blancon, describes the photo-degradation process. "What we found in this study is that under constant 1-sun illumination the large-grain perovskite solar cells degrade majorly in terms of the photocurrent," Nie said. "But what's interesting is that the devices can self-heal when sitting in the dark for a short while."

By performing extensive device and spectroscopy characterization, the team found that sunlight triggers the activation of meta-stable trap states at relatively low energy deep in the perovskite bandgap, which results in the trapping and captures of photo-generated charge carriers. Over time, trapped carriers can further accumulate in the device, reducing the photocurrent. On the other hand, placing the solar cell devices in the dark for several minutes allows for "evacuation" of these trapped charges, thus leading to the recovery of the pristine device performances upon the next operation cycle. The team also found that these processes are strongly temperature dependent, and that temperature control over a range of a few tens of degrees can either circumvent the activation of the photo-degradation mechanisms or speed-up the self-healing process.

After exploring several possible physical mechanisms to explain the microscopic origin of the formation of these trap states, joint experimental and theoretical investigations concluded that the most possible scenario is the creation of small polaronic states involving lattice strain and molecular re-orientations of the organic cation present in the perovskite lattice.

"Although several theoretical works have predicted the important role of the organic cation (CH3NH3) in organometallic halide perovskite, it is one of the first joint experimental-theoretical reports on the observation of its impact on the properties of perovskite materials and devices," Blancon said. "Our understanding of the organic cation is still primitive, but our work demonstrates its utmost importance in the photo-stability of perovskite devices and calls for further investigations in the future."

Most importantly this study will provide researchers across the world a first solution to the photo-stability issue in perovskite devices, and future research is now underway toward improvements and the long term technological viability of perovskite-based photovoltaics.

Hybrid perovskite materials, crystalline semiconductors that can be processed from solution at low temperature, have excellent opto-electronic properties that have enabled a wide variety of device applications. Los Alamos has been one of the leaders in the hybrid perovskite photovoltaic research community. By solving the stability problem, the team is ready to apply the material in other applications related to US energy security.


The paper's Los Alamos authors are Wanyi Nie, Jean-Christophe Blancon, Amanda Neukirk, Hsinhan Tsai, Sergei Tretiak, Jared Crochet, Gautam Gupta and Aditya Mohite. From Brookhaven National Laboratory are Kannatassen Appavoo and Matthew Sfeir; from Rutgers University is Mannish Chhowalla; from Purdue University is Mohammad Alam; from Université de Rennes 1, France is Claudine Katan; and from INSA de Rennes, France is Jackie Even.

The work at Los Alamos National Laboratory was supported by DOE Office of Basic Energy Sciences and by the Los Alamos Laboratory Directed Research and Development program. This work was done in part at the Center for Integrated Nanotechnologies, a DOE Office of Science User Facility at Los Alamos. Computational and the DFT calculations performed used resources provided by the Los Alamos Institutional Computing Program, supported by the US Department of Energy National Nuclear Security Administration. The work at Purdue University was supported by a Bay Area Photovoltaic Consortium (BAPVC). The work in France was supported by Cellule Energie du CNRS (SOLHYB- TRANS Project) and the University of Rennes 1 (Action Incitative, Défis Scientifique Emergents 2015). This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWXT Government Group, and URS, an AECOM company, for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction and solving problems related to energy, environment, infrastructure, health and global security concerns.

DOE/Los Alamos National Laboratory

Related Perovskite Solar Cells Current Events and Perovskite Solar Cells News Articles

Stanford scientists improve perovskite solar-cell absorbers by giving them a squeeze
Solar cells made of artificial metallic crystalline structures called perovskites have shown great promise in recent years. Now Stanford University scientists have found that applying pressure can change the properties of these inexpensive materials and how they respond to light.

Tuning perovskite solar-cell absorbers by giving them a squeeze
Solar cells are among the most established and widely-utilized alternative energy technologies due to their relative affordability and ease of integration into existing infrastructure.

Claims for solar cell efficiency put to test at NREL
The sheet of paper taped to the door of Keith Emery's office tells the story. On the paper is a simple fever chart showing the improvements made in increasing the efficiency of two dozen types of solar cells. Some of the lines marking record efficiencies date to the mid-1970s.

Scientists provide new guideline for synthesis of fullerene electron acceptors
Organic/polymer solar cells represent the most important direction for green energy in the future. Fullerene electron acceptors have been widely used in organic/polymer solar cells as well as perovskite solar cells.

Cheaper solar cells with 20.2 percent efficiency
EPFL scientists have developed a solar-panel material that can cut down on photovoltaic costs while achieving competitive power-conversion efficiency of 20.2%.

NREL research identifies increased potential for perovskites as a material for solar cells
Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) have demonstrated a way to significantly increase the efficiency of perovskite solar cells by reducing the amount of energy lost to heat.

Monolithic perovskite/silicon tandem solar cell achieves record efficiency
Organic-inorganic perovskite materials are one of the biggest surprises in solar cell research. In just six years, the efficiency of perovskite solar cells has increased five-fold; moreover, perovskite solar cells can be manufactured from solution and be cost-effectively printed on large areas in the future.

Silver: The promising electrode winner for low-cost perovskite solar cells
Perovskite solar cells are the rising star in photovoltaics. They absorb light across almost all visible wavelengths, they have exceptional power conversion efficiencies exceeding 20% in the lab, and they are relatively easy to fabricate.

Research improves efficiency from larger perovskite solar cells
Using a newly developed fabrication method, a research team has attained better than a 15-percent energy conversion efficiency from perovskite solar cells larger than one square centimeter area.

Graphene as a front contact for silicon-perovskite tandem solar cells
Teams at HZB have already acquired extensive experience with these kinds of tandem cells. A particularly effective complement to conventional silicon is the hybrid material called perovskite.
More Perovskite Solar Cells Current Events and Perovskite Solar Cells News Articles

  Perovskite Solar Cells: Principle, Materials, Devices (Series in Chemistry of Energy and the Environment) (Series on Chemistry, Energy and the Environment)
by Kai Zhu (Author), Kai Zhu (Editor), Lioz Etgar (Editor), Seigo Ito (Editor), Chun-Guey Wu (Editor), Peter Chen (Editor), Eric Diau (Editor), Carlito Ponseca (Editor), Ming Kui Wang (Editor)

Energy and climate change are two of the most critical issues nowadays. These two topics are also correlated to each other. Fossil fuels are the main energy supplies that have been used in modern history since the industrial revolution. The impact of CO2 emission has been a major concern for its effect on global warming and other consequences. In addition, fossil fuels are not unlimited. Due to the increasing demands for energy supplies, alternative renewable, sustainable, environmentally friendly energy resources are desirable.
Solar energy is an unlimited, clean, and renewable energy source, which can be considered to replace the energy supply of fossil fuel. The silicon solar cell is one of the dominant photovoltaic technologies currently, which converting sunlight directly into...

Hole Conductor Free Perovskite-based Solar Cells (SpringerBriefs in Applied Sciences and Technology)

Hole Conductor Free Perovskite-based Solar Cells (SpringerBriefs in Applied Sciences and Technology)
by Lioz Etgar (Author)

This book discusses the promising area of perovskite-based solar cells. It places particular emphasis on a highly unique perovskite solar cell structure, focusing on the special properties of hybrid organic-inorganic perovskites. As such, it offers readers sound essentials, serving as building blocks for the future development of this rapidly evolving field.

Perovskites: Structure-Property Relationships

Perovskites: Structure-Property Relationships
by Richard J. D. Tilley (Author)

Uniquely describes both the crystallography and properties of perovskite related materials. Practical applications in solar cells, microelectronics and telecommunications Interdisciplinary topic drawing on materials science, chemistry, physics, and geology Contains problems and answers to enhance knowledge retention 

Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures

Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures
by Nam-Gyu Park (Editor), Michael Grätzel (Editor), Tsutomu Miyasaka (Editor)

This book covers fundamentals of organometal perovskite materials and their photovoltaics, including materials preparation and device fabrications. Special emphasis is given to halide perovskites. The opto-electronic properties of perovskite materials and recent progress in perovskite solar cells are described. In addition, comments on the issues to current and future challenges are mentioned.

Printable Solar Cells (Advances in Hydrogen Production and Storage (AHPS))

Printable Solar Cells (Advances in Hydrogen Production and Storage (AHPS))
by Nurdan Demirci Sankir (Editor), Mehmet Sankir (Editor)

This book provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of the Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV.

  The Physics of Solar Cells: Perovskites, Organics, and Photovoltaic Fundamentals
by Juan Bisquert (Author)

Energy devices with solar cells and batteries are crucial in the drive to obtain a carbon-free energy economy. Funding and commercial applications are focused on developing new materials and devices that perform required energy conversion and storage processes with high efficiency, adequate capabilities, and low production costs. This book provides an accessible summary and introduction of the main physicochemical principles that govern solar cells, perovskites, and organic materials. Recent rapid advances in the science and technology of solar cells with the discovery of perovskite solar cells and their development to a highly efficient semiconductor solar cell are highlighted.

Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications

Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications
by Giacomo Giorgi (Editor), Koichi Yamashita (Editor)

Perovskites are a class of recently discovered crystals with a multitude of innovative applications. In particular, a lead role is played by organic-inorganic halide perovskites (OIHPs) in solar devices. In 2013 Science and Nature selected perovskite solar cells as one of the biggest scientific breakthroughs of that year. This book provides the first comprehensive account of theoretical aspects of perovskite solar cells, starting at an introductory level but covering the latest cutting-edge research. Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications aims to provide a theoretical standpoint on OIHPs and on their photovoltaic applications, with particular focus on the issues that are still limiting their usage in solar cells. This book explores the role that...

  Nanoenergy: Nanotechnology Applied for Energy Production
by Flavio Leandro de Souza (Editor), Edson Leite (Editor)

This book discuss the recent advances and future trends of nanoscience in solar energy conversion and storage. This second edition revisits and updates all the previous book chapters, adding the latest advances in the field of Nanoenergy. Four new chapters are included on the principles and fundamentals of artificial photosynthesis using metal transition semiconductors, perovskite solar cells, hydrogen storage and neutralization batteries. More fundamental aspects can be found in this book, increasing the comparison between theory-experimental achievements and latest developments in commercial devices.

Excitonic and Photonic Processes in Materials (Springer Series in Materials Science)

Excitonic and Photonic Processes in Materials (Springer Series in Materials Science)
by Jai Singh (Editor), Richard T. Williams (Editor)

This book is expected to present state-of-the-art understanding of a selection of excitonic and photonic processes in useful materials from semiconductors to insulators to metal/insulator nanocomposites, both inorganic and organic. Among the featured applications are components of solar cells, detectors, light-emitting devices, scintillators and materials with novel optical properties. Excitonic properties are particularly important in organic photovoltaics and light emitting devices, as also in questions of the ultimate resolution and efficiency of new-generation scintillators for medical diagnostics, border security and nuclear non proliferation. Novel photonic and optoelectronic applications benefit from new material combinations and structures to be discussed.

Fiber-Shaped Energy Harvesting and Storage Devices (Nanostructure Science and Technology)

Fiber-Shaped Energy Harvesting and Storage Devices (Nanostructure Science and Technology)
by Huisheng Peng (Author)

This comprehensive book covers flexible fiber-shaped devices in the area of energy conversion and storage. The first part of the book introduces recently developed materials, particularly, various nanomaterials and composite materials based on nanostructured carbon such as carbon nanotubes and graphene, metals and polymers for the construction of fiber electrodes. The second part of the book focuses on two typical twisted and coaxial architectures of fiber-shaped devices for energy conversion and storage. The emphasis is placed on dye-sensitized solar cells, polymer solar cells, lithium-ion batteries, electrochemical capacitors and integrated devices. The future development and challenges of these novel and promising fiber-shaped devices are summarized in the final part. This book is the...

© 2017