Science Current Events | Science News | Brightsurf.com
 

Better combustion for power generation

June 01, 2016

In the United States, the use of natural gas for electricity generation continues to grow. The driving forces behind this development? A boom in domestic natural gas production, historically low prices, and increased scrutiny over fossil fuels' carbon emissions. Though coal still accounts for about a third of US electricity generation, utility companies are pivoting to cleaner natural gas to replace decommissioned coal plants.

Low-maintenance, high-efficiency gas turbines are playing an important role in this transition, boosting the economic attractiveness of natural gas-derived electricity. General Electric (GE), a world leader in industrial power generation technology and the world's largest supplier of gas turbines, considers gas-fired power generation a key growth sector of its business and a practical step toward reducing global greenhouse gas emissions. When burned for electricity, natural gas emits half the carbon dioxide that coal does. It also requires fewer environmental controls.

"Advanced gas turbine technology gives customers one of the lowest installed costs per kilowatt," said Joe Citeno, combustion engineering manager for GE Power. "We see it as a staple for increased power generation around the world."

GE's H-class heavy-duty gas turbines are currently the world's largest and most efficient gas turbines, capable of converting fuel and air into electricity at more than 62 percent power-plant efficiency when matched with a steam turbine generator, a setup known as combined cycle. By comparison, today's simple cycle power plants (gas turbine generator only) operate with efficiencies ranging between 33 and 44 percent depending on the size and model.

GE is constantly searching for ways to improve the performance and overall value of its products. A single percent increase in gas turbine efficiency equates to millions of dollars in saved fuel costs for GE's customers and tons of carbon dioxide spared from the atmosphere. For a 1 gigawatt power plant, a 1 percent improvement in efficiency saves 17,000 metric tons of carbon dioxide emissions a year, equivalent to removing more than 3,500 vehicles from the road. Applying such an efficiency gain across the US combined-cycle fleet (approximately 200 gigawatts) would save about 3.5 million metric tons of carbon dioxide each year.

In 2015, the search for efficiency gains led GE to tackle one of the most complex problems in science and engineering--instabilities in gas turbine combustors. The journey led the company to the Titan supercomputer at the Oak Ridge Leadership Computing Facility (OLCF), a US Department of Energy (DOE) Office of Science User Facility located at DOE's Oak Ridge National Laboratory.

Balancing act

Simultaneously increasing the efficiency and reducing the emissions of natural gas-powered turbines is a delicate balancing act. It requires an intricate understanding of these massive energy-converting machines -- their materials, aerodynamics, and heat transfer, as well as how effectively they combust, or burn, fuel. Of all these factors, combustion physics is perhaps the most complex.

In an H-class gas turbine, combustion takes place within 6-foot-long chambers at high temperature and pressure. Much like a car engine has multiple cylinders, GE's H-class turbines possess a ring of 12 or 16 combustors, each capable of burning nearly three tons of fuel and air per minute at firing temperatures exceeding 1,500 degrees Celsius. The extreme conditions make it one of the most difficult processes to test at GE's gas turbine facility in Greenville, South Carolina.

At higher temperatures, gas turbines produce more electricity. They also produce more emissions, such as nitrogen oxides (NOx), a group of reactive gases that are regulated at the state and federal levels. To reduce emissions, GE's Dry Low NOx combustion technology mixes fuel with air before burning it in the combustor.

"When the fuel and air are nearly perfectly mixed, you have the lowest emissions," said Jin Yan, manager of the computational combustion lab at GE's Global Research Center. "Imagine 20 tractor-trailers full of combustible fuel-air mixture. One combustor burns that amount every minute. In the process, it produces less than a tea cup (several ounces) of NOx emissions."

Such precise burning can lead to other problems, specifically an unstable flame. Inside a combustor, instabilities in the flame can cause deafening acoustic pulsations--essentially noise-induced pressure waves. These pulsations can affect turbine performance. At their worst, they can wear out the machinery in a matter of minutes. For this reason, whenever a new pulsation is detected, understanding its cause and predicting whether it might affect future products becomes a high priority for the design team.

Testing limits

In 2014, one such pulsation caught researchers' attention during a full-scale test of a gas turbine. The test revealed a combustion instability that hadn't been observed during combustor development testing. The company determined the instability levels were acceptable for sustained operation and would not affect gas turbine performance. But GE researchers wanted to understand its cause, an investigation that could help them predict how the pulsations could manifest in future designs.

The company suspected the pulsations stemmed from an interaction between adjacent combustors, but they had no physical test capable of confirming this hypothesis. Because of facility airflow limits, GE is able to test only one combustor at a time. Even if the company could test multiple combustors, access-visibility and camera technology currently limit the researchers' ability to understand and visualize the causes of high-frequency flame instabilities. So GE placed a bet on high-fidelity modeling and simulation to reveal what the physical tests could not.

The company asked its team of computational scientists, led by Yan, to see if it could reproduce the instability virtually using high-performance computers. GE also asked Yan's team to use the resulting model to determine whether the pulsations might manifest in a new GE engine incorporating DOE-funded technology and due to be tested in late 2015, less than a year away. GE then challenged Yan's team, in collaboration with the software company Cascade Technologies, to deliver these first-of-a-kind results before the 2015 test to demonstrate a truly predictive capability.

"We didn't know if we could do it," Yan said. "First, we needed to replicate the instability that appeared in the 2014 test. This required modeling multiple combustors, something we had never done. Then we needed to predict through simulation whether that instability would appear in the new turbine design and at what level."

Such enhanced modeling and simulation capabilities held the potential to dramatically accelerate future product development cycles and could provide GE with new insights into turbine engine performance earlier in the design process instead of after testing physical prototypes.

But GE faced another hurdle. To meet the challenge time frame, Yan and his team needed computing power that far exceeded GE's internal capabilities.

A computing breakthrough

In the spring of 2015, GE turned to the OLCF for help. Through the OLCF's Accelerating Competitiveness through Computational Excellence (ACCEL) industrial partnerships program, Yan's team received a Director's Discretionary allocation on Titan, a Cray XK7 system capable of 27 petaflops, or 27 quadrillion calculations per second.

Yan's team began working closely with Cascade Technologies, based in Palo Alto, California, to scale up Cascade's CHARLES code. CHARLES is a high-fidelity flow solver for large eddy simulation, a mathematical model grounded in fluid flow equations known as Navier-Stokes equations. Using this framework, CHARLES is capable of capturing the high-speed mixing and complex geometries of air and fuel during combustion. The code's efficient algorithms make it ideally suited to leverage leadership-class supercomputers to produce petabytes of simulation data.

Cascade's CHARLES solver can trace its technical roots back to Stanford University's Center for Turbulence Research and research efforts funded through DOE's Advanced Simulation and Computing program. Many of Cascade's engineering team are alumni of these programs. Although the CHARLES solver was developed to tackle problems like high-fidelity jet engine simulation and supersonic jet noise prediction, it had never been applied to predict combustion dynamics in a configuration as complex as a GE gas turbine combustion system.

Using 11.2 million hours on Titan, members of Yan's team and Cascade's engineering team executed simulation runs that harnessed 8,000 and 16,000 cores at a time, achieving a speedup in code performance 30 times greater than the original code. Cascade's Sanjeeb Bose, an alumnus of DOE's Computational Science Graduate Fellowship Program, provided significant contributions to the application development effort, upgrading CHARLES' reacting flow solver to work five times faster on Titan's CPUs.

Leveraging CHARLES' massively parallel grid generation capabilities -- a new software feature developed by Cascade -- Yan's team produced a fine-mesh grid composed of nearly 1 billion cells. Each cell captured microsecond-scale snapshots of the air-fuel mix during turbulent combustion, including particle diffusion, chemical reactions, heat transfer, and energy exchange.

Working with OLCF visualization specialist Mike Matheson, Yan's team developed a workflow to analyze its simulation data and view the flame structure in high definition. By early summer, the team had made enough progress to view the results: the first ever multicombustor dynamic instability simulation of a GE gas turbine. "It was a breakthrough for us," Yan said. "We successfully developed a model that was able to repeat what we observed in the 2014 test."

The new capability gave GE researchers a clearer picture of the instability and its causes that couldn't be obtained otherwise. Beyond reproducing the instability, the advanced model allowed the team to slow down, zoom in, and observe combustion physics at the sub-millisecond level, something no empirical method can match.

"These simulations are actually more than an experiment," Citeno said. "They provide new insights which, combined with human creativity, allow for opportunities to improve designs within the practical product cycle."

With the advanced model and new simulation methods in hand, Yan's team neared the finish line of its goal. Applying its new methods to the 2015 gas turbine, the team predicted a low instability level in the latest design that was acceptable for operation and would not affect performance. These results were affirmed during the full-scale gas turbine test, validating the predictive accuracy of the new simulation methods developed on Titan. "It was very exciting," Yan said. "GE's leadership put a lot of trust in us."

With the computational team's initial doubts now a distant memory, GE entered a world of new possibilities for evaluating gas turbine engines.

The path forward

Validation of its high-fidelity model and the predictive accuracy of its new simulation methods are giving GE the ability to better integrate simulation directly into its product design cycle. "It's opened up our design space," Yan said. "We can look at all kinds of ideas we never thought about before. The number of designs we can evaluate has grown substantially."

Coupled with advancements in other aspects of gas turbine design, Citeno projects the end result will be a full percentage-point gain in efficiency. This is important to GE's and DOE's goal to produce a combined-cycle power plant that operates at 65 percent efficiency, a leap that translates to billions of dollars a year in fuel savings for customers. A 1 percent efficiency gain across the US combined-cycle fleet is estimated to save more than $11 billion in fuel over the next 20 years.

"The world desperately needs higher-efficiency gas turbines because the end result is millions of tons of carbon dioxide that's not going into the atmosphere," said Citeno, noting that in the last 2 years, more than 50 percent of gas turbines manufactured at GE's Greenville plant were exported to other countries. "The more efficient the technology becomes, the faster it gets adopted globally, which further helps to improve the world's carbon footprint."

Internally, GE's experience with the OLCF's world-class computing resources and expertise helps the company understand and evaluate the value of larger-scale high-performance computing, supporting the case for future investment in GE's in-house capabilities. "Access to OLCF systems allows us to see what's possible and de-risk our internal computing investment decisions," Citeno said. "We can show concrete examples to our leadership of how advanced modeling and simulation is driving new product development instead of hypothetical charts."

Building on its success using Titan, GE is continuing to develop its combustion simulation capabilities under a 2016 allocation awarded through the DOE Office of Advanced Scientific Computing Research (ASCR) Leadership Computing Challenge, or ALCC, program. As part of the project, GE's vendor partner Cascade is continuing to enhance its CHARLES code so that it can take advantage of Titan's GPU accelerators.

"A year ago these were gleam-in-the-eye calculations," Citeno said. "We wouldn't do them because we couldn't do them in a reasonable time frame to affect product design. Titan collapsed that, compressing our learning cycle by a factor of 10-plus and giving us answers in a month that would have taken a year with our own resources."

###

Oak Ridge National Laboratory is supported by the US Department of Energy's Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Oak Ridge National Laboratory


Related Gas Turbines Current Events and Gas Turbines News Articles


Researchers predict material with record-setting melting point
Using powerful computer simulations, researchers from Brown University have identified a material with a higher melting point than any known substance.

WSU researchers develop fuel cells for increased airplane efficiency
Washington State University researchers have developed the first fuel cell that can directly convert fuels, such as jet fuel or gasoline, to electricity, providing a dramatically more energy-efficient way to create electric power for planes or cars.

New research blows away claims that aging wind farms are a bad investment
The UK has a target of generating 15 per cent of the nation's energy from renewable resources such as wind farms by 2020.

Sandia Labs benchmark helps wind industry measure success
Sandia National Laboratories published the second annual 2012 Wind Plant Reliability Benchmark on Monday, and the results should help the nation's growing wind industry benchmark its performance, understand vulnerabilities and enhance productivity.

Rebalancing the nuclear debate through education
Better physics teaching with a particular emphasis on radioactivity and radiation science could improve public awareness through education of the environmental benefits and relative safety of nuclear power generation, according to leading Brazilian scientist Heldio Villar.

Supercritical carbon dioxide Brayton Cycle turbines promise giant leap
Sandia National Laboratories researchers are moving into the demonstration phase of a novel gas turbine system for power generation, with the promise that thermal-to-electric conversion efficiency will be increased to as much as 50 percent - an improvement of 50 percent for nuclear power stations equipped with steam turbines, or a 40 percent improvement for simple gas turbines.

Sandia security experts help Kazakhstan safely transport, store Soviet-era bomb materials
A Sandia National Laboratories team helped reach a major milestone in the nation's nuclear nonproliferation efforts by working with the Central Asian country of Kazakhstan to move nuclear materials - enough to build an estimated 775 nuclear weapons - to safety.

Electric Fields Make Ceramic Production Quicker, Cheaper
Researchers from North Carolina State University have found that applying a small electric field results in faster formation of ceramic products during manufacture at lower temperatures, and enhances the strength of the ceramic itself.

NC State Research May Revolutionize Ceramics Manufacturing
Researchers from North Carolina State University have developed a new way to shape ceramics using a modest electric field, making the process significantly more energy efficient. The process should result in significant cost savings for ceramics manufacturing over traditional manufacturing methods.

'Lighting a match in a tornado' is 1 of multiple feats for propulsion center
When Walter O'Brien was a young boy, he recalls a moment of complete exhilaration when he was able to design and build a balsa wood airplane model that actually flew from his parents' front porch, across the street, and landed on the neighbor's deck.
More Gas Turbines Current Events and Gas Turbines News Articles

Gas Turbine Engineering Handbook, Fourth Edition

Gas Turbine Engineering Handbook, Fourth Edition
by Meherwan P. Boyce Fellow American Society of Mechanical Engineers (ASME USA) and Fellow The Institute of Diesel and Gas Turbine Engineers (IDGTE U.K.) (Author)


Written by one of the field’s most well known experts, the Gas Turbine Engineering Handbook has long been the standard for engineers involved in the design, selection, maintenance and operation of gas turbines. With far reaching, comprehensive coverage across a range of topics from design specifications to maintenance troubleshooting, this one-stop resource provides newcomers to the industry with all the essentials to learn and fill knowledge gaps, and established practicing gas turbine engineers with a reliable go-to reference. This new edition brings the Gas Turbine Engineering Handbook right up to date with new legislation and emerging topics to help the next generation of gas turbine professionals understand the underlying principles of gas turbine operation, the economic...

Gas Turbine Theory (6th Edition)

Gas Turbine Theory (6th Edition)
by H.I.H. Saravanamuttoo (Author), G.F.C. Rogers (Author), H. Cohen (Author), Paul Straznicky (Author)


Among the topics covered in this volume are: shaft power cycles; gas turbine cycles for aircraft propulsion; centrifugal compressors; axial flow compressors; combustion systems; axial and radial flow turbines; prediction of performance of simple gas turbines; and prediction of performance.

The Design of High-Efficiency Turbomachinery and Gas Turbines (MIT Press)

The Design of High-Efficiency Turbomachinery and Gas Turbines (MIT Press)
by David Gordon Wilson (Author), Theodosios Korakianitis (Author)


This comprehensive textbook is unique in its design-focused approach to turbomachinery and gas turbines. It offers students and practicing engineers methods for configuring these machines to perform with the highest possible efficiency. Examples and problems are based on the actual design of turbomachinery and turbines. After an introductory chapter that outlines the goals of the book and provides definitions of terms and parts, the book offers a brief review of the basic principles of thermodynamics and efficiency definitions. The rest of the book is devoted to the analysis and design of real turbomachinery configurations and gas turbines, based on a consistent application of thermodynamic theory and a more empirical treatment of fluid dynamics that relies on the extensive use of design...

Elements of Propulsion: Gas Turbines and Rockets, Second Edition (Aiaa Education)

Elements of Propulsion: Gas Turbines and Rockets, Second Edition (Aiaa Education)
by Jack D. Mattingly and Keith M. Boyer (Author)


Elements of Propulsion: Gas Turbines and Rockets, Second Edition provides a complete introduction to gas turbine and rocket propulsion for aerospace and mechanical engineers. Textbook coverage has been revised and expanded, including a new chapter on compressible flow. Design concepts are introduced early and integrated throughout. Written with extensive student input, the book builds upon definitions and gradually develops the thermodynamics, gas dynamics, rocket engine analysis, and gas turbine engine principles.

Gas Turbines, Second Edition: A Handbook of Air, Land and Sea Applications

Gas Turbines, Second Edition: A Handbook of Air, Land and Sea Applications
by Claire Soares EMM Systems Dallas Texas USAPrincipal Engineer (P. E.) (Author)


Covering basic theory, components, installation, maintenance, manufacturing, regulation and industry developments, Gas Turbines: A Handbook of Air, Sea and Land Applications is a broad-based introductory reference designed to give you the knowledge needed to succeed in the gas turbine industry, land, sea and air applications. Providing the big picture view that other detailed, data-focused resources lack, this book has a strong focus on the information needed to effectively decision-make and plan gas turbine system use for particular applications, taking into consideration not only operational requirements but long-term life-cycle costs in upkeep, repair and future use. With concise, easily digestible overviews of all important theoretical bases and a practical focus throughout, Gas...

Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition

Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition
by Arthur H. Lefebvre (Author), Dilip R. Ballal (Author)


Reflecting the developments in gas turbine combustion technology that have occurred in the last decade, Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition provides an up-to-date design manual and research reference on the design, manufacture, and operation of gas turbine combustors in applications ranging from aeronautical to power generation. Essentially self-contained, the book only requires a moderate amount of prior knowledge of physics and chemistry. In response to the fluctuating cost and environmental effects of petroleum fuel, this third edition includes a new chapter on alternative fuels. This chapter presents the physical and chemical properties of conventional (petroleum-based) liquid and gaseous fuels for gas turbines; reviews the properties of alternative...

Aerothermodynamics of Gas Turbine and Rocket Propulsion

Aerothermodynamics of Gas Turbine and Rocket Propulsion
by G. Oates (Author)


This seminal book on gas turbine technology has been a bestseller since it was first published. It now includes a comprehensive set of software programs that complement the text with problems and design analyses. Software topics included are atmosphere programs, quasi-one-dimensional flow programs (ideal constant-area heat interaction, adiabatic constant-area flow with friction, rocket nozzle performance, normal shock waves, oblique shock waves), gas turbine programs (engine cycle analysis and engine off-design performance), and rocket combustion programs (Tc and PC given, He and PC given, isentropic expansion).

Elements of Gas Turbine Propulsion w/ IBM 3.5' Disk

Elements of Gas Turbine Propulsion w/ IBM 3.5' Disk
by Jack Mattingly (Author)


This text provides an introduction to the fundamentals of gas turbine engines and jet propulsion for aerospace or mechanical engineers. The book contains sufficient material for two sequential courses i propulsion (advanced fluid dynamics) an introductory course in jet propulsion and a gas turbine engine components course. The text is divided into four parts introduction to aircraft propulsion; basic concepts and one-dimensional/gas dynamics; analysis and performance of air breathing propulsion systems; and analysis and design of gas turbine engine components.

Fundamentals of Gas Turbines

Fundamentals of Gas Turbines
by William W. Bathie (Author)


Presents the fundamentals of the gas turbine engine, including cycles, components, component matching, and environmental considerations.

Aircraft Gas Turbine Powerplants Textbook

Aircraft Gas Turbine Powerplants Textbook
by CHARLES E OTIS (Author)


With over 500 illustrations, charts, and tables, this book provides an extensive cross-reference between today's aircraft and engines. It's newly revised to include the most up-to-date information on aircraft gas turbine powerplants and updated coverage of jet engine technology. Authors: Otis and Vosbury.

© 2017 BrightSurf.com