Science Current Events | Science News |

World to be even hotter by century's end

May 25, 2006

BERKELEY - If Earth's past cycles of warming and cooling are any indication, temperatures by the end of the century will be even hotter than current climate models predict, according to a report by University of California, Berkeley, researchers.

The scientists based their conclusion on a study of Antarctic ice cores containing a 360,000-year record of global temperature and levels of carbon dioxide and methane-two of the major greenhouse gases implicated in global warming. They found that during periods of warming, greenhouse gas levels rose and created significantly higher temperatures than would be expected solely from the increased intensity of sunlight that triggered these warm periods.

Though the ice core data do not point to specific processes that amplify the warming, the researchers suspect that it is due to warmer soils and oceans giving off more CO2 and methane, which add to the greenhouse effect of CO2 from fossil fuel burning and other human activities.

Thus, while current models predict temperature increases of 1.5 to 4.5 degrees Celsius (2.7 to 8.1 degrees Fahrenheit) from a doubling of atmospheric carbon dioxide levels, the natural processes injecting more CO2 into the atmosphere will lead to temperature increases of 1.6 to 6 degrees Celsius (2.9 to 10.8 degrees Fahrenheit), with the higher temperatures more likely, the researchers said.

"We are underestimating the magnitude of warming because we are ignoring the extra carbon dioxide dumped into the atmosphere because of warming," said John Harte, UC Berkeley professor of energy and resources and of environmental science, policy & management. "Warming gets an extra kick from CO2 feedback."

"The warming caused by our release of CO2 triggers changes in the Earth system that lead to release of more CO2 to the atmosphere," added co-author Margaret Torn, a UC Berkeley adjunct associate professor of energy and resources and staff scientist at Lawrence Berkeley National Laboratory. "If that is the case, then every bit of CO2 release now is actually committing us to a larger CO2 change in the atmosphere."

The result, Harte and Torn conclude in their paper, is "that the upper value of warming that is projected for the end of the 21st century, 5.8°C [10.4°F], could be increased to 7.7°C [13.9°F], or nearly 2°C additional warming."

The report is scheduled for publication in the May 26 issue of Geophysical Research Letters. That issue also will contain an article that looks at the same effect over a shorter time scale, confirming the amplification reported by Harte and Torn and suggesting that it may be even greater.

Current climate models, called General Circulation Models, start from fundamental physical processes to calculate a probable temperature increase based on likely atmospheric carbon dioxide levels, typically a doubling of today's CO2 concentration. These models also include feedback mechanisms that boost or moderate warming, such as the increased heat absorption expected when highly reflective ice sheets and glaciers melt; or the effect of more atmospheric water vapor on the formation of clouds, which both reflect sunlight and insulate the Earth.

But models are only now beginning to take into account the extra carbon dioxide and methane injected into the atmosphere as global temperatures increase. Though this is expected because warmer soils decompose faster, releasing more CO2, and because warmer oceans outgas more CO2, scientists have yet to quantify the full impact of these processes.

"Without a mechanism, people feel uncomfortable putting these processes in a model. I think that's a big mistake," Harte said.

Luckily, it's possible to estimate the effect of CO2 feedback by looking at how the Earth responded to past cycles of warming and cooling, which were caused by natural variations in the strength of sunlight hitting Earth, rather than by human production of greenhouse gases. Ice cores drilled in the Vostok ice sheet in 1998 and 1999 by Russia, France and the United States span nearly 420,000 years and carry information about four major climate cycles and many smaller temperature swings. In 1999, scientists measured CO2 and methane levels from gas trapped in bubbles in the ice, and have estimated global temperature based on oxygen isotope and deuterium ratios. UC Berkeley's Kurt Cuffey, professor of geography and earth and planetary science, updated these measurements in 2001.

Climate scientists immediately saw that the ice core data imply a strong positive feedback to global CO2 and methane levels, but how much this impacted warming trends was unclear.

Harte, a physicist by training, and Torn devised a way to use these data and current global climate models to estimate the effect of increased CO2 entering the atmosphere as a result of warming, called the "gain," analogous to the gain of an electronic amplifier-the factor by which output power increases. From Cuffey's data, Harte and Torn were able to extract the effect of temperature on CO2 and methane levels. They calculated the reverse-the effect of CO2 and methane levels on temperature, or the so-called climate sensitivity-from climate models, using a number consistent with a new estimate published in the April 20 issue of Nature.

Harte and Torn added the resultant gains from CO2 and methane to the gain already known for other climate feedbacks, in particular the largest source, increased atmospheric water vapor, to get a total gain that they used to calculate the temperature increase that would result from a doubling of current CO2 levels.

Both researchers emphasize that the large temperature range they predict-1.6 to 6 degrees Celsius-does not mean that we have an equal chance of ending up with less warming as with greater warming. In other words, it doesn't mean that the uncertainties are symmetric about an average increase of 3.8°C.

"People see this uncertainty and think that we have an equal probability of dodging a bullet as catching it. That is a fallacy," Torn said.

"By giving the appearance of symmetric feedback, people have an excuse to say, 'Maybe we don't have to worry so much,'" Harte said. "But while there are uncertainties in the feedbacks, all the major feedbacks are positive, meaning they would increase warming, and we know of no significant negative feedbacks that would slow warming."

While Harte acknowledges that the future may not look like past periods of global warming, "in the absence of contradictory evidence, we have to assume the future will respond like the past."

"Whatever the mechanisms that cause temperature to create a change in CO2 and methane, they are repeatable again and again and again over many cooling and warming cycles. So, although the world is different today than it was then, we don't have a basis for ignoring them," Torn added.

Harte has been conducting studies on experimental plots in the Rocky Mountains that would quantify the effect of warmer temperatures on soil carbon. He and his colleagues found that artificially heated plots lost significant soil carbon to the atmosphere as CO2, compared to control plots. Thus, he said, the effect of heating on the carbon cycle in his plots is to generate a positive feedback, though he noted that this might be a short-term effect. The long term effect, however, is unknown, as is the effect of warming in other habitats.

"We need to know the effect of warmer temperatures in all different habitats, not just temperate Rocky Mountain forests but also the tropics and European boreal forests and Eastern U.S. deciduous forests and savanna and prairie. There are huge data gaps," he said.

Torn noted, however, that humans are the biggest unknown.

"To predict the future, you have to guess how much CO2 levels will go up. That depends on the biggest uncertainty of all-what humans decide to do. Do we get smart and prevent CO2 emissions? Do we continue with business as usual? Or will we end up somewhere in between?"

The work was supported by the U.S. Department of Energy's Climate Change Research Division and by the National Science Foundation.

University of California, Berkeley

Related Climate Models Current Events and Climate Models News Articles

Deep, old water explains why Antarctic Ocean hasn't warmed
The waters surrounding Antarctica may be one of the last places to experience human-driven climate change.

Spring snow a no-go?
Spring snowpack, relied on by ski resorts and water managers throughout the Western United States, may be more vulnerable to a warming climate in coming decades, according to a new University of Utah study.

A planet 1,200 light-years away is a good prospect for a habitable world
A distant planet known as Kepler-62f could be habitable, a team of astronomers reports.

NASA scientists explain the art of creating digital hurricanes
Every day, scientists at NASA work on creating better hurricanes - on a computer screen. At NASA's Goddard Space Flight Center in Greenbelt, Maryland, a team of scientists spends its days incorporating millions of atmospheric observations, sophisticated graphic tools and lines of computer code to create computer models simulating the weather and climate conditions responsible for hurricanes.

Current atmospheric models underestimate the dirtiness of Arctic air
Black carbon aerosols--particles of carbon that rise into the atmosphere when biomass, agricultural waste, and fossil fuels are burned in an incomplete way--are important for understanding climate change, as they absorb sunlight, leading to higher atmospheric temperatures, and can also coat Arctic snow with a darker layer, reducing its reflectivity and leading to increased melting.

Will more snow over Antarctica offset rising seas? Don't count on it
Many factors related to warming will conspire to raise the planet's oceans over coming decades -- thermal expansion of the world's oceans, melting of snow and ice worldwide, and the collapse of massive ice sheets.

Atmospheric aerosols can significantly cool down climate
It is possible to significantly slow down and even temporarily stop the progression of global warming by increasing the atmospheric aerosol concentration, shows a new study from the University of Eastern Finland. However, climate engineering does not remove the need to reduce greenhouse gas emissions.

Increased vegetation in the Arctic region may counteract global warming
Climate change creates more shrub vegetation in barren, arctic ecosystems. A study at Lund University in Sweden shows that organisms, such as bacteria and fungi, are triggered to break down particularly nutritious dead parts of shrubbery.

Poor countries to bear brunt of climate change despite emitting least CO2
Many of the world's poorest countries are expected to experience daily heat extremes due to climate change sooner than wealthier nations - according to research from an international team including the University of East Anglia.

Frequency of extreme heat waves on the increase in Africa: Could occur annually by 2040
Longer, hotter, more regular heat waves could have a damaging effect on life expectancy and crop production in Africa warn climate scientists in a study published in the journal Environmental Research Letters.
More Climate Models Current Events and Climate Models News Articles

A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (Infrastructures)

A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (Infrastructures)
by Paul N. Edwards (Author)

Global warming skeptics often fall back on the argument that the scientific case for global warming is all model predictions, nothing but simulation; they warn us that we need to wait for real data, "sound science." In A Vast Machine Paul Edwards has news for these skeptics: without models, there are no data. Today, no collection of signals or observations -- even from satellites, which can "see" the whole planet with a single instrument -- becomes global in time and space without passing through a series of data models. Everything we know about the world's climate we know through models. Edwards offers an engaging and innovative history of how scientists learned to understand the atmosphere -- to measure it, trace its past, and model its future.

Demystifying Climate Models: A Users Guide to Earth System Models (Earth Systems Data and Models)

Demystifying Climate Models: A Users Guide to Earth System Models (Earth Systems Data and Models)
by Andrew Gettelman (Author), Richard B. Rood (Author)

This book demystifies the models we use to simulate present and future climates, allowing readers to better understand how to use climate model results. In order to predict the future trajectory of the Earth’s climate, climate-system simulation models are necessary. When and how do we trust climate model predictions? The book offers a framework for answering this question. It provides readers with a basic primer on climate and climate change, and offers non-technical explanations for how climate models are constructed, why they are uncertain, and what level of confidence we should place in them. It presents current results and the key uncertainties concerning them. Uncertainty is not a weakness but understanding uncertainty is a strength and a key part of using any model, including...

Climate Models Fail

Climate Models Fail

Climate Models Fail exposes the disturbing fact that climate models being used by the IPCC for their 5th Assessment Report have very little practical value because they cannot simulate critical variables of interest to the public and policymakers. Using easy-to-read graphs, this book compares data (surface temperature, precipitation, and sea ice area) with the computer model simulations. It is very easy to see that the model outputs bear little relationship to the data. In other words, climate models create imaginary climates in virtual worlds that exhibit no similarities to the climate of the world in which we live.
This book was prepared for readers without scientific backgrounds. The terms used by scientists are explained and non-technical “translations” are provided....

Climate Change Atlas: Greenhouse Simulations from the Model Evaluation Consortium for Climate Assessment (Atmospheric and Oceanographic Sciences Library)

Climate Change Atlas: Greenhouse Simulations from the Model Evaluation Consortium for Climate Assessment (Atmospheric and Oceanographic Sciences Library)
by A. Henderson-Sellers (Author), Ann-Maree Hansen (Author)

Concentrations of greenhouse gases in the atmosphere have been increasing since the Industrial Revolution, prompting concern that these increases could result in global and regional climate change. The impacts of this enhanced greenhouse effect are not yet fully understood and may depend on both the degree and the speed of climate change.
Impact and policy assessments are demanding more information from climate modellers and specific case studies use the most up-to-date, completely validated model results available. But one model `snapshot' will not represent the whole scene, nor the full complexity and uncertainty of future climate prediction. The Climate Change Atlas puts such individual model scenarios into context.
The Climate Change Atlas is a means of...

Strategies for Rapid Climate Mitigation: Wartime mobilisation as a model for action? (Routledge Advances in Climate Change Research)

Strategies for Rapid Climate Mitigation: Wartime mobilisation as a model for action? (Routledge Advances in Climate Change Research)
by Laurence L Delina (Author)

To keep the global average temperature from rising further than 2°C, emissions must peak soon and then fall steeply. This book examines how such rapid mitigation can proceed – in the scale and speed required for effective climate action – using an analogy provided by the mobilisation for a war that encompassed nations, the Second World War. Strategies for Rapid Climate Mitigation examines the wartime-climate analogy by drawing lessons from wartime mobilisations to develop contingency plans for a scenario where governments implement stringent mitigation programs as an ‘insurance policy’ where we pay for future benefits. Readers are provided a picture of how these programs could look, how they would work, what could trigger them, and the challenges in execution. The book analyses...

Climate Modeling for Scientists and Engineers

Climate Modeling for Scientists and Engineers
by John B. Drake (Author)

Climate modeling and simulation teach us about past, present, and future conditions of life on earth and help us understand observations about the changing atmosphere and ocean and terrestrial ecology. Focusing on high-end modeling and simulation of earth's climate, Climate Modeling for Scientists and Engineers presents observations about the general circulations of the earth and the partial differential equations used to model the dynamics of weather and climate and covers numerical methods for geophysical flows in more detail than many other texts. It also discusses parallel algorithms and the role of high-performance computing used in the simulation of weather and climate and provides supplemental lectures and MATLAB exercises on an associated Web page. Audience: This book is intended...

Land Use Impacts on Climate (Springer Geography)

Land Use Impacts on Climate (Springer Geography)
by Xiangzheng Deng (Editor), Burak Güneralp (Editor), Jinyan Zhan (Editor), Hongbo Su (Editor)

This book introduces a key issue in research on the climatic impact of land cover and land use changes via terrestrial biogeophysical processes. The parameterization of surface processes and a systematic approach to modeling the climatic impacts of land use change are discussed respectively, and can be used to improve parameterization schemes for climate numerical models and to provide a systematic method, thus offering more scientific and enhanced support for research on the climatic effects of land use/cover change. Further, based on predictions and scenario analyses of land use changes in typical zones, the climatic impact of various types of changes in different areas can be simulated through climatic numerical modeling, the simulation results are suitable for use in climate...

Mathematics and Climate

Mathematics and Climate
by Hans Kaper (Author), Hans Engler (Author)

Winner of the Atmospheric Science Librarians International Choice Award for 2013 as the best book in the fields of meteorology, climatology, or atmospheric sciences, Mathematics and Climate is a timely textbook with wide appeal. It is aimed at students and researchers in mathematics and statistics who are interested in current issues of climate science, as well as at climate scientists who wish to become familiar with qualitative and quantitative methods of mathematics and statistics. The authors emphasize conceptual models that capture important aspects of Earth's climate system and present the mathematical and statistical techniques that can be applied to their analysis. Topics from climate science include the Earth s energy balance, temperature distribution, ocean circulation patterns...

Fundamentals of Ocean Climate Models

Fundamentals of Ocean Climate Models
by Stephen Griffies (Author)

This book sets forth the physical, mathematical, and numerical foundations of computer models used to understand and predict the global ocean climate system. Aimed at students and researchers of ocean and climate science who seek to understand the physical content of ocean model equations and numerical methods for their solution, it is largely general in formulation and employs modern mathematical techniques. It also highlights certain areas of cutting-edge research. Stephen Griffies presents material that spans a broad spectrum of issues critical for modern ocean climate models. Topics are organized into parts consisting of related chapters, with each part largely self-contained. Early chapters focus on the basic equations arising from classical mechanics and thermodynamics used to...

The Brain-Targeted Teaching Model for 21st-Century Schools

The Brain-Targeted Teaching Model for 21st-Century Schools
by Mariale M. Hardiman (Author)

A powerful guide for applying brain research for more effective instruction The Brain-Targeted Teaching Model for 21st-Century Schools serves as a bridge between research and practice by providing a cohesive, proven, and usable model of effective instruction. Compatible with other professional development programs, this model shows how to apply educational and cognitive neuroscience principles into classroom settings through a pedagogical framework. The model’s six components are: (1) Establish the emotional connection to learning 
(2) Develop the physical learning environment
(3) Design the learning experience 
(4) Teach for the mastery of content, skills, and concepts 
(5) Teach for the extension and application of knowledge
(6) Evaluate...

© 2016