Science Current Events | Science News |

World to be even hotter by century's end

May 25, 2006
BERKELEY - If Earth's past cycles of warming and cooling are any indication, temperatures by the end of the century will be even hotter than current climate models predict, according to a report by University of California, Berkeley, researchers.

The scientists based their conclusion on a study of Antarctic ice cores containing a 360,000-year record of global temperature and levels of carbon dioxide and methane-two of the major greenhouse gases implicated in global warming. They found that during periods of warming, greenhouse gas levels rose and created significantly higher temperatures than would be expected solely from the increased intensity of sunlight that triggered these warm periods.

Though the ice core data do not point to specific processes that amplify the warming, the researchers suspect that it is due to warmer soils and oceans giving off more CO2 and methane, which add to the greenhouse effect of CO2 from fossil fuel burning and other human activities.

Thus, while current models predict temperature increases of 1.5 to 4.5 degrees Celsius (2.7 to 8.1 degrees Fahrenheit) from a doubling of atmospheric carbon dioxide levels, the natural processes injecting more CO2 into the atmosphere will lead to temperature increases of 1.6 to 6 degrees Celsius (2.9 to 10.8 degrees Fahrenheit), with the higher temperatures more likely, the researchers said.

"We are underestimating the magnitude of warming because we are ignoring the extra carbon dioxide dumped into the atmosphere because of warming," said John Harte, UC Berkeley professor of energy and resources and of environmental science, policy & management. "Warming gets an extra kick from CO2 feedback."

"The warming caused by our release of CO2 triggers changes in the Earth system that lead to release of more CO2 to the atmosphere," added co-author Margaret Torn, a UC Berkeley adjunct associate professor of energy and resources and staff scientist at Lawrence Berkeley National Laboratory. "If that is the case, then every bit of CO2 release now is actually committing us to a larger CO2 change in the atmosphere."

The result, Harte and Torn conclude in their paper, is "that the upper value of warming that is projected for the end of the 21st century, 5.8°C [10.4°F], could be increased to 7.7°C [13.9°F], or nearly 2°C additional warming."

The report is scheduled for publication in the May 26 issue of Geophysical Research Letters. That issue also will contain an article that looks at the same effect over a shorter time scale, confirming the amplification reported by Harte and Torn and suggesting that it may be even greater.

Current climate models, called General Circulation Models, start from fundamental physical processes to calculate a probable temperature increase based on likely atmospheric carbon dioxide levels, typically a doubling of today's CO2 concentration. These models also include feedback mechanisms that boost or moderate warming, such as the increased heat absorption expected when highly reflective ice sheets and glaciers melt; or the effect of more atmospheric water vapor on the formation of clouds, which both reflect sunlight and insulate the Earth.

But models are only now beginning to take into account the extra carbon dioxide and methane injected into the atmosphere as global temperatures increase. Though this is expected because warmer soils decompose faster, releasing more CO2, and because warmer oceans outgas more CO2, scientists have yet to quantify the full impact of these processes.

"Without a mechanism, people feel uncomfortable putting these processes in a model. I think that's a big mistake," Harte said.

Luckily, it's possible to estimate the effect of CO2 feedback by looking at how the Earth responded to past cycles of warming and cooling, which were caused by natural variations in the strength of sunlight hitting Earth, rather than by human production of greenhouse gases. Ice cores drilled in the Vostok ice sheet in 1998 and 1999 by Russia, France and the United States span nearly 420,000 years and carry information about four major climate cycles and many smaller temperature swings. In 1999, scientists measured CO2 and methane levels from gas trapped in bubbles in the ice, and have estimated global temperature based on oxygen isotope and deuterium ratios. UC Berkeley's Kurt Cuffey, professor of geography and earth and planetary science, updated these measurements in 2001.

Climate scientists immediately saw that the ice core data imply a strong positive feedback to global CO2 and methane levels, but how much this impacted warming trends was unclear.

Harte, a physicist by training, and Torn devised a way to use these data and current global climate models to estimate the effect of increased CO2 entering the atmosphere as a result of warming, called the "gain," analogous to the gain of an electronic amplifier-the factor by which output power increases. From Cuffey's data, Harte and Torn were able to extract the effect of temperature on CO2 and methane levels. They calculated the reverse-the effect of CO2 and methane levels on temperature, or the so-called climate sensitivity-from climate models, using a number consistent with a new estimate published in the April 20 issue of Nature.

Harte and Torn added the resultant gains from CO2 and methane to the gain already known for other climate feedbacks, in particular the largest source, increased atmospheric water vapor, to get a total gain that they used to calculate the temperature increase that would result from a doubling of current CO2 levels.

Both researchers emphasize that the large temperature range they predict-1.6 to 6 degrees Celsius-does not mean that we have an equal chance of ending up with less warming as with greater warming. In other words, it doesn't mean that the uncertainties are symmetric about an average increase of 3.8°C.

"People see this uncertainty and think that we have an equal probability of dodging a bullet as catching it. That is a fallacy," Torn said.

"By giving the appearance of symmetric feedback, people have an excuse to say, 'Maybe we don't have to worry so much,'" Harte said. "But while there are uncertainties in the feedbacks, all the major feedbacks are positive, meaning they would increase warming, and we know of no significant negative feedbacks that would slow warming."

While Harte acknowledges that the future may not look like past periods of global warming, "in the absence of contradictory evidence, we have to assume the future will respond like the past."

"Whatever the mechanisms that cause temperature to create a change in CO2 and methane, they are repeatable again and again and again over many cooling and warming cycles. So, although the world is different today than it was then, we don't have a basis for ignoring them," Torn added.

Harte has been conducting studies on experimental plots in the Rocky Mountains that would quantify the effect of warmer temperatures on soil carbon. He and his colleagues found that artificially heated plots lost significant soil carbon to the atmosphere as CO2, compared to control plots. Thus, he said, the effect of heating on the carbon cycle in his plots is to generate a positive feedback, though he noted that this might be a short-term effect. The long term effect, however, is unknown, as is the effect of warming in other habitats.

"We need to know the effect of warmer temperatures in all different habitats, not just temperate Rocky Mountain forests but also the tropics and European boreal forests and Eastern U.S. deciduous forests and savanna and prairie. There are huge data gaps," he said.

Torn noted, however, that humans are the biggest unknown.

"To predict the future, you have to guess how much CO2 levels will go up. That depends on the biggest uncertainty of all-what humans decide to do. Do we get smart and prevent CO2 emissions? Do we continue with business as usual? Or will we end up somewhere in between?"

The work was supported by the U.S. Department of Energy's Climate Change Research Division and by the National Science Foundation.

University of California, Berkeley

Related Climate Models Current Events and Climate Models News Articles

Biology trumps chemistry in open ocean
Single-cell phytoplankton in the ocean are responsible for roughly half of global oxygen production, despite vast tracts of the open ocean that are devoid of life-sustaining nutrients.

Livermore Lab scientists show salinity matters when it comes to sea level changes
Using ocean observations and a large suite of climate models, Lawrence Livermore National Laboratory scientists have found that long-term salinity changes have a stronger influence on regional sea level changes than previously thought.

Crops play a major role in the annual CO2 cycle increase
Each year, the planet balances its budget. The carbon dioxide absorbed by plants in the spring and summer as they convert solar energy into food is released back to the atmosphere in autumn and winter. Levels of the greenhouse gas fall, only to rise again.

Small volcanic eruptions could be slowing global warming
Small volcanic eruptions might eject more of an atmosphere-cooling gas into Earth's upper atmosphere than previously thought, potentially contributing to the recent slowdown in global warming, according to a new study.

As Temperatures Rise, Soil Will Relinquish Less Carbon to the Atmosphere Than Currently Predicted
Here's another reason to pay close attention to microbes: Current climate models probably overestimate the amount of carbon that will be released from soil into the atmosphere as global temperatures rise, according to research from the US Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab).

NASA Computer Model Provides a New Portrait of Carbon Dioxide
An ultra-high-resolution NASA computer model has given scientists a stunning new look at how carbon dioxide in the atmosphere travels around the globe.

Latest Supercomputers Enable High-Resolution Climate Models, Truer Simulation of Extreme Weather
Not long ago, it would have taken several years to run a high-resolution simulation on a global climate model. But using some of the most powerful supercomputers now available, Lawrence Berkeley National Laboratory (Berkeley Lab) climate scientist Michael Wehner was able to complete a run in just three months.

How variable are ocean temperatures?
The earth's climate appears to have been more variable over the past 7,000 years than often thought. This is the conclusion of a new study forthcoming online this week in the U.S. scientific journal "Proceedings of the National Academy of Sciences" (PNAS).

Berkeley Lab scientists ID new driver behind Arctic warming
Scientists have identified a mechanism that could turn out to be a big contributor to warming in the Arctic region and melting sea ice.

Researchers resolve the Karakoram glacier anomaly, a cold case of climate science
Researchers from Princeton University and other institutions may have hit upon an answer to a climate-change puzzle that has eluded scientists for years, and that could help understand the future availability of water for hundreds of millions of people.
More Climate Models Current Events and Climate Models News Articles

Climate Models Fail

Climate Models Fail

Climate Models Fail exposes the disturbing fact that climate models being used by the IPCC for their 5th Assessment Report have very little practical value because they cannot simulate critical variables of interest to the public and policymakers. Using easy-to-read graphs, this book compares data (surface temperature, precipitation, and sea ice area) with the computer model simulations. It is very easy to see that the model outputs bear little relationship to the data. In other words, climate models create imaginary climates in virtual worlds that exhibit no similarities to the climate of the world in which we live.
This book was prepared for readers without scientific backgrounds. The terms used by scientists are explained and non-technical “translations” are provided....

A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (Infrastructures)

A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (Infrastructures)
by Paul N. Edwards (Author)

Global warming skeptics often fall back on the argument that the scientific case for global warming is all model predictions, nothing but simulation; they warn us that we need to wait for real data, "sound science." In A Vast Machine Paul Edwards has news for these skeptics: without models, there are no data. Today, no collection of signals or observations -- even from satellites, which can "see" the whole planet with a single instrument -- becomes global in time and space without passing through a series of data models. Everything we know about the world's climate we know through models. Edwards offers an engaging and innovative history of how scientists learned...

NIPCC vs. IPCC: Addressing the Disparity between Climate Models and Observations: Testing the Hypothesis of Anthropogenic Global Warming

NIPCC vs. IPCC: Addressing the Disparity between Climate Models and Observations: Testing the Hypothesis of Anthropogenic Global Warming
by TvR Medienverlag

Global warming: Is it natural or is it manmade? This issue is of crucial importance for both climate science and climate policy. We update the ongoing controversy. This booklet also discusses chaotic uncertainties of climate models and how to overcome them, presents new thinking on Climategate and the Hockeystick graph - and shows what we can say about the absence of post-1979 warming in the temperature data of the 20th century.

Climate Change: A Very Short Introduction (Very Short Introductions)

Climate Change: A Very Short Introduction (Very Short Introductions)
by Mark Maslin (Author)

Climate change is still, arguably, the most critical and controversial issue facing the world in the twenty-first century. Previously published as Global Warming: A Very Short Introduction, the new edition has been renamed Climate Change: A Very Short introduction, to reflect the important change in the terminology of the last decade.

In the third edition, Mark Maslin includes crucial updates from the last few years, including the results of the 2013 IPCC Fifth Assessment Report, the effects of ocean acidification, and the impact of changes to global population and health. Exploring key topics in the debate, Maslin makes sense of the complexities of climate change, from political and social issues to environmental and scientific ones. Looking at its predicated impacts, he explores...

System Zoo 2 Simulation Models. Climate, Ecosystems, Resources

System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
by Hartmut Bossel (Author)

Mathematical modeling and computer simulation make it possible to understand and control the dynamic processes taking place in complex systems. Simulation provides insights into the often surprising diversity of possible behaviors, and allows identifying possibilities for intervention and options for alternative development. About one hundred simulation models from all areas of life are fully documented in the three volumes of the 'System Zoo'. They can be quickly implemented and easily operated using freely available system dynamics software. Volume 2 of the System Zoo contains simulation models of the regional water cycle and global carbon cycle, the photosynthesis of vegetation, forest growth, the water, nutrient, and energy dynamics of agriculture, the interaction of plants,...

The Brain-Targeted Teaching Model for 21st-Century Schools

The Brain-Targeted Teaching Model for 21st-Century Schools
by Mariale M. Hardiman (Author)

A powerful guide for applying brain research for more effective instruction The Brain-Targeted Teaching Model for 21st-Century Schools serves as a bridge between research and practice by providing a cohesive, proven, and usable model of effective instruction. Compatible with other professional development programs, this model shows how to apply educational and cognitive neuroscience principles into classroom settings through a pedagogical framework. The model’s six components are: (1) Establish the emotional connection to learning 
(2) Develop the physical learning environment
(3) Design the learning experience 
(4) Teach for the mastery of content, skills, and concepts 
(5) Teach for the extension and application of knowledge
(6) Evaluate...

Climate Confusion: How Global Warming Hysteria Leads to Bad Science, Pandering Politicians and Misguided Policies That Hurt the Poor

Climate Confusion: How Global Warming Hysteria Leads to Bad Science, Pandering Politicians and Misguided Policies That Hurt the Poor
by Roy W. Spencer (Author)

The current frenzy over global warming has galvanized the public and cost taxpayers billons of dollars in federal expenditures for climate research. It has spawned Hollywood blockbusters and inspired major political movements. It has given a higher calling to celebrities and built a lucrative industry for scores of eager scientists. In short, ending climate change has become a national crusade.

And yet, despite this dominant and sprawling campaign, the facts behind global warming remain as confounding as ever.

In Climate Confusion, distinguished climatologist Dr. Roy Spencer observes that our obsession with global warming has only clouded the issue. Forsaking blindingly technical statistics and doomsday scenarios, Dr. Spencer explains in simple terms how the climate...

Climate System Modeling

Climate System Modeling
by Kevin E. Trenberth (Editor)

This interdisciplinary volume aimed at graduate students and researchers provides a thorough grounding in the tools necessary for an appreciation of climate change and its implications. It discusses not only the primary concepts involved but also the mathematical, physical, chemical and biological basis for the component models and the sources of uncertainty, the assumptions made and the approximations introduced. Climate System Modeling addresses all aspects of the climate system: the atmosphere and the oceans, the cryosphere, terrestrial ecosystems and the biosphere, land surface processes and global biogeochemical cycles. As a comprehensive text it will appeal to students and researchers concerned with any aspect of climatology and the study of related topics in the broad earth and...

The Climate Casino: Risk, Uncertainty, and Economics for a Warming World

The Climate Casino: Risk, Uncertainty, and Economics for a Warming World
by William D. Nordhaus (Author)

Climate change is profoundly altering our world in ways that pose major risks to human societies and natural systems. We have entered the Climate Casino and are rolling the global-warming dice, warns economist William Nordhaus. But there is still time to turn around and walk back out of the casino, and in this essential book the author explains how. Bringing together all the important issues surrounding the climate debate, Nordhaus describes the science, economics, and politics involved—and the steps necessary to reduce the perils of global warming. Using language accessible to any concerned citizen and taking care to present different points of view fairly, he discusses the problem from start to finish: from the beginning, where warming originates in our personal energy use, to the...

This Changes Everything: Capitalism vs. The Climate

This Changes Everything: Capitalism vs. The Climate
by Naomi Klein (Author)

The most important book yet from the author of the international bestseller The Shock Doctrine, a brilliant explanation of why the climate crisis challenges us to abandon the core “free market” ideology of our time, restructure the global economy, and remake our political systems.

In short, either we embrace radical change ourselves or radical changes will be visited upon our physical world. The status quo is no longer an option.

In This Changes Everything Naomi Klein argues that climate change isn’t just another issue to be neatly filed between taxes and health care. It’s an alarm that calls us to fix an economic system that is already failing us in many ways. Klein meticulously builds the case for how massively reducing our greenhouse emissions is our best chance...

© 2014