Science Current Events | Science News | Brightsurf.com
 

World to be even hotter by century's end

May 25, 2006
BERKELEY - If Earth's past cycles of warming and cooling are any indication, temperatures by the end of the century will be even hotter than current climate models predict, according to a report by University of California, Berkeley, researchers.

The scientists based their conclusion on a study of Antarctic ice cores containing a 360,000-year record of global temperature and levels of carbon dioxide and methane-two of the major greenhouse gases implicated in global warming. They found that during periods of warming, greenhouse gas levels rose and created significantly higher temperatures than would be expected solely from the increased intensity of sunlight that triggered these warm periods.

Though the ice core data do not point to specific processes that amplify the warming, the researchers suspect that it is due to warmer soils and oceans giving off more CO2 and methane, which add to the greenhouse effect of CO2 from fossil fuel burning and other human activities.

Thus, while current models predict temperature increases of 1.5 to 4.5 degrees Celsius (2.7 to 8.1 degrees Fahrenheit) from a doubling of atmospheric carbon dioxide levels, the natural processes injecting more CO2 into the atmosphere will lead to temperature increases of 1.6 to 6 degrees Celsius (2.9 to 10.8 degrees Fahrenheit), with the higher temperatures more likely, the researchers said.

"We are underestimating the magnitude of warming because we are ignoring the extra carbon dioxide dumped into the atmosphere because of warming," said John Harte, UC Berkeley professor of energy and resources and of environmental science, policy & management. "Warming gets an extra kick from CO2 feedback."

"The warming caused by our release of CO2 triggers changes in the Earth system that lead to release of more CO2 to the atmosphere," added co-author Margaret Torn, a UC Berkeley adjunct associate professor of energy and resources and staff scientist at Lawrence Berkeley National Laboratory. "If that is the case, then every bit of CO2 release now is actually committing us to a larger CO2 change in the atmosphere."

The result, Harte and Torn conclude in their paper, is "that the upper value of warming that is projected for the end of the 21st century, 5.8°C [10.4°F], could be increased to 7.7°C [13.9°F], or nearly 2°C additional warming."

The report is scheduled for publication in the May 26 issue of Geophysical Research Letters. That issue also will contain an article that looks at the same effect over a shorter time scale, confirming the amplification reported by Harte and Torn and suggesting that it may be even greater.

Current climate models, called General Circulation Models, start from fundamental physical processes to calculate a probable temperature increase based on likely atmospheric carbon dioxide levels, typically a doubling of today's CO2 concentration. These models also include feedback mechanisms that boost or moderate warming, such as the increased heat absorption expected when highly reflective ice sheets and glaciers melt; or the effect of more atmospheric water vapor on the formation of clouds, which both reflect sunlight and insulate the Earth.

But models are only now beginning to take into account the extra carbon dioxide and methane injected into the atmosphere as global temperatures increase. Though this is expected because warmer soils decompose faster, releasing more CO2, and because warmer oceans outgas more CO2, scientists have yet to quantify the full impact of these processes.

"Without a mechanism, people feel uncomfortable putting these processes in a model. I think that's a big mistake," Harte said.

Luckily, it's possible to estimate the effect of CO2 feedback by looking at how the Earth responded to past cycles of warming and cooling, which were caused by natural variations in the strength of sunlight hitting Earth, rather than by human production of greenhouse gases. Ice cores drilled in the Vostok ice sheet in 1998 and 1999 by Russia, France and the United States span nearly 420,000 years and carry information about four major climate cycles and many smaller temperature swings. In 1999, scientists measured CO2 and methane levels from gas trapped in bubbles in the ice, and have estimated global temperature based on oxygen isotope and deuterium ratios. UC Berkeley's Kurt Cuffey, professor of geography and earth and planetary science, updated these measurements in 2001.

Climate scientists immediately saw that the ice core data imply a strong positive feedback to global CO2 and methane levels, but how much this impacted warming trends was unclear.

Harte, a physicist by training, and Torn devised a way to use these data and current global climate models to estimate the effect of increased CO2 entering the atmosphere as a result of warming, called the "gain," analogous to the gain of an electronic amplifier-the factor by which output power increases. From Cuffey's data, Harte and Torn were able to extract the effect of temperature on CO2 and methane levels. They calculated the reverse-the effect of CO2 and methane levels on temperature, or the so-called climate sensitivity-from climate models, using a number consistent with a new estimate published in the April 20 issue of Nature.

Harte and Torn added the resultant gains from CO2 and methane to the gain already known for other climate feedbacks, in particular the largest source, increased atmospheric water vapor, to get a total gain that they used to calculate the temperature increase that would result from a doubling of current CO2 levels.

Both researchers emphasize that the large temperature range they predict-1.6 to 6 degrees Celsius-does not mean that we have an equal chance of ending up with less warming as with greater warming. In other words, it doesn't mean that the uncertainties are symmetric about an average increase of 3.8°C.

"People see this uncertainty and think that we have an equal probability of dodging a bullet as catching it. That is a fallacy," Torn said.

"By giving the appearance of symmetric feedback, people have an excuse to say, 'Maybe we don't have to worry so much,'" Harte said. "But while there are uncertainties in the feedbacks, all the major feedbacks are positive, meaning they would increase warming, and we know of no significant negative feedbacks that would slow warming."

While Harte acknowledges that the future may not look like past periods of global warming, "in the absence of contradictory evidence, we have to assume the future will respond like the past."

"Whatever the mechanisms that cause temperature to create a change in CO2 and methane, they are repeatable again and again and again over many cooling and warming cycles. So, although the world is different today than it was then, we don't have a basis for ignoring them," Torn added.

Harte has been conducting studies on experimental plots in the Rocky Mountains that would quantify the effect of warmer temperatures on soil carbon. He and his colleagues found that artificially heated plots lost significant soil carbon to the atmosphere as CO2, compared to control plots. Thus, he said, the effect of heating on the carbon cycle in his plots is to generate a positive feedback, though he noted that this might be a short-term effect. The long term effect, however, is unknown, as is the effect of warming in other habitats.

"We need to know the effect of warmer temperatures in all different habitats, not just temperate Rocky Mountain forests but also the tropics and European boreal forests and Eastern U.S. deciduous forests and savanna and prairie. There are huge data gaps," he said.

Torn noted, however, that humans are the biggest unknown.

"To predict the future, you have to guess how much CO2 levels will go up. That depends on the biggest uncertainty of all-what humans decide to do. Do we get smart and prevent CO2 emissions? Do we continue with business as usual? Or will we end up somewhere in between?"

The work was supported by the U.S. Department of Energy's Climate Change Research Division and by the National Science Foundation.

University of California, Berkeley


Related Climate Models Current Events and Climate Models News Articles


NSF-funded Antarctic drilling team is first to bore through hundreds of meters of ice to where ice sheet, ocean and land converge
Using a specially designed hot-water drill to cleanly bore through a half mile of ice, a National Science Foundation (NSF)-funded team of researchers has become the first ever to reach and sample the "grounding zone," where Antarctic ice, land and sea all converge.

Greenland Ice: The warmer it gets the faster it melts
Melting of glacial ice will probably raise sea level around the globe, but how fast this melting will happen is uncertain.

Epic survey finds regional patterns of soot and dirt on North American snow
Snow is not as white as it looks. Mixed in with the reflective flakes are tiny, dark particles of pollution. University of Washington scientists recently published the first large-scale survey of impurities in North American snow to see whether they might absorb enough sunlight to speed melt rates and influence climate.

Coral reveals long-term link between Pacific winds, global climate
New research indicates that shifts in Pacific trade winds played a key role in twentieth century climate variation, a sign that they may again be influencing global temperatures.

Report: Clearing rainforests distorts wind and water, packs climate wallop beyond carbon
A new study released today presents powerful evidence that clearing trees not only spews carbon into the atmosphere, but also triggers major shifts in rainfall and increased temperatures worldwide that are just as potent as those caused by current carbon pollution.

Global warming's influence on extreme weather
Extreme climate and weather events such as record high temperatures, intense downpours and severe storm surges are becoming more common in many parts of the world.

Climate change projected to drive species northward
Anticipated changes in climate will push West Coast marine species from sharks to salmon northward an average of 30 kilometers per decade, shaking up fish communities and shifting fishing grounds, according to a new study published in Progress in Oceanography.

El Niño's 'remote control' on hurricanes in the Northeastern Pacific
El Niño, the abnormal warming of sea surface temperatures in the Pacific Ocean, is a well-studied tropical climate phenomenon that occurs every few years.

New study explains the role of oceans in global 'warming hiatus'
New research shows that ocean heat uptake across three oceans is the likely cause of the 'warming hiatus' - the current decade-long slowdown in global surface warming.

CO2 warming effects felt just a decade after being emitted
It takes just 10 years for a single emission of carbon dioxide (CO2) to have its maximum warming effects on the Earth.
More Climate Models Current Events and Climate Models News Articles

Climate Models Fail

Climate Models Fail


Climate Models Fail exposes the disturbing fact that climate models being used by the IPCC for their 5th Assessment Report have very little practical value because they cannot simulate critical variables of interest to the public and policymakers. Using easy-to-read graphs, this book compares data (surface temperature, precipitation, and sea ice area) with the computer model simulations. It is very easy to see that the model outputs bear little relationship to the data. In other words, climate models create imaginary climates in virtual worlds that exhibit no similarities to the climate of the world in which we live.
This book was prepared for readers without scientific backgrounds. The terms used by scientists are explained and non-technical “translations” are provided....

A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (Infrastructures)

A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (Infrastructures)
by Paul N. Edwards (Author)


Global warming skeptics often fall back on the argument that the scientific case for global warming is all model predictions, nothing but simulation; they warn us that we need to wait for real data, "sound science." In A Vast Machine Paul Edwards has news for these skeptics: without models, there are no data. Today, no collection of signals or observations -- even from satellites, which can "see" the whole planet with a single instrument -- becomes global in time and space without passing through a series of data models. Everything we know about the world's climate we know through models. Edwards offers an engaging and innovative history of how scientists learned...

System Zoo 2 Simulation Models. Climate, Ecosystems, Resources

System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
by Hartmut Bossel (Author)


Mathematical modeling and computer simulation make it possible to understand and control the dynamic processes taking place in complex systems. Simulation provides insights into the often surprising diversity of possible behaviors, and allows identifying possibilities for intervention and options for alternative development. About one hundred simulation models from all areas of life are fully documented in the three volumes of the 'System Zoo'. They can be quickly implemented and easily operated using freely available system dynamics software. Volume 2 of the System Zoo contains simulation models of the regional water cycle and global carbon cycle, the photosynthesis of vegetation, forest growth, the water, nutrient, and energy dynamics of agriculture, the interaction of plants,...

Fundamentals of Ocean Climate Models

Fundamentals of Ocean Climate Models
by Stephen Griffies (Author)


This book sets forth the physical, mathematical, and numerical foundations of computer models used to understand and predict the global ocean climate system. Aimed at students and researchers of ocean and climate science who seek to understand the physical content of ocean model equations and numerical methods for their solution, it is largely general in formulation and employs modern mathematical techniques. It also highlights certain areas of cutting-edge research. Stephen Griffies presents material that spans a broad spectrum of issues critical for modern ocean climate models. Topics are organized into parts consisting of related chapters, with each part largely self-contained. Early chapters focus on the basic equations arising from classical mechanics and thermodynamics used to...

The Brain-Targeted Teaching Model for 21st-Century Schools

The Brain-Targeted Teaching Model for 21st-Century Schools
by Mariale M. Hardiman (Author)


A powerful guide for applying brain research for more effective instruction The Brain-Targeted Teaching Model for 21st-Century Schools serves as a bridge between research and practice by providing a cohesive, proven, and usable model of effective instruction. Compatible with other professional development programs, this model shows how to apply educational and cognitive neuroscience principles into classroom settings through a pedagogical framework. The model’s six components are: (1) Establish the emotional connection to learning 
(2) Develop the physical learning environment
(3) Design the learning experience 
(4) Teach for the mastery of content, skills, and concepts 
(5) Teach for the extension and application of knowledge
(6) Evaluate...

Introduction To Three-dimensional Climate Modeling

Introduction To Three-dimensional Climate Modeling
by Warren M. Washington (Author), Claire L. Parkinson (Author)


This book provides an introduction to the development of three-dimensional climate models, including their four major components: atmosphere, ocean, land/vegetation, and sea ice. The fundamental processes in each component and the interactions among them are explained using basic scientific principles, and elements of the numerical methods used in solving the model equations are also provided. The authors show how the theory and models grew historically and how well they are able to account for known aspects of the climate system. This book is written so that a reader who is only vaguely aware of climate models will be able to gain an understanding of what the models are attempting to simulate, how the models are constructed, what the models have succeeded in simulating, and how the...

A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (Infrastructures) [Hardcover] [2010] (Author) Paul N. Edwards

A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (Infrastructures) [Hardcover] [2010] (Author) Paul N. Edwards
by The MIT Press (Publisher)




Climate Change: A Very Short Introduction (Very Short Introductions)

Climate Change: A Very Short Introduction (Very Short Introductions)
by Mark Maslin (Author)


Climate change is still, arguably, the most critical and controversial issue facing the world in the twenty-first century. Previously published as Global Warming: A Very Short Introduction, the new edition has been renamed Climate Change: A Very Short introduction, to reflect the important change in the terminology of the last decade.

In the third edition, Mark Maslin includes crucial updates from the last few years, including the results of the 2013 IPCC Fifth Assessment Report, the effects of ocean acidification, and the impact of changes to global population and health. Exploring key topics in the debate, Maslin makes sense of the complexities of climate change, from political and social issues to environmental and scientific ones. Looking at its predicated impacts, he explores...

Climate Change: What the Science Tells Us

Climate Change: What the Science Tells Us
by Charles Fletcher (Author)


Fletcher's 1st edition of "Climate Change: What the Science Tells Us" places strong emphasis on the peer-reviewed literature in reporting the impacts of climate change on the ocean, terrestrial ecosystems, the water cycle, human communities, dangerous weather patterns, and potential future Earth systems. The book offers detailed discussion of greenhouse gases, oceanic and atmospheric processes, Pleistocene and Holocene paleoclimate, the human fingerprints of climate change, modeling climate, sea level rise, climate impacts on economic sectors, and dangerous weather patterns associated with climate change.Fletcher offers the first real textbook to present the science surrounding climate change at the right level for an undergraduate student. His polished writing style makes this an...

The Climate Casino: Risk, Uncertainty, and Economics for a Warming World

The Climate Casino: Risk, Uncertainty, and Economics for a Warming World
by William D. Nordhaus (Author)


Climate change is profoundly altering our world in ways that pose major risks to human societies and natural systems. We have entered the Climate Casino and are rolling the global-warming dice, warns economist William Nordhaus. But there is still time to turn around and walk back out of the casino, and in this essential book the author explains how. Bringing together all the important issues surrounding the climate debate, Nordhaus describes the science, economics, and politics involved—and the steps necessary to reduce the perils of global warming. Using language accessible to any concerned citizen and taking care to present different points of view fairly, he discusses the problem from start to finish: from the beginning, where warming originates in our personal energy use, to the...

© 2015 BrightSurf.com