Science Current Events | Science News | Brightsurf.com
 

NIST releases new standard for semiconductor industry

October 13, 2006
A wide range of optical electronic devices, from laser disk players to traffic lights, may be improved in the future thanks to a small piece of semiconductor, about the size of a button, coated with aluminum, gallium, and arsenic (AlGaAs).

The 1-centimeter square coating, just 3 micrometers thick, is the first standard for the chemical composition of thin-film semiconductor alloys issued by the National Institute of Standards and Technology (NIST). Standard Reference Material (SRM) 2841 was requested by the compound semiconductor industry to help measure and control thin film composition as a basis for optimizing material and device properties. The SRM can be used to calibrate equipment for making or analyzing these materials. Buyers are expected to include companies that grow or characterize thin films or use them to make devices, as well as government and university laboratories.

AlGaAs is used as a barrier material to increase conductivity in high-speed circuits for wireless communication; semiconductor lasers for optical disk drives, bar code scanning, xerography, and laser surgery; and light-emitting diodes for remote controls, traffic lights, and medical instruments. The NIST standard is expected to increase the accuracy of chemical characterization of AlGaAs films by an order of magnitude over the current state of the art. Improved accuracy will reduce wasteful duplication of reference wafers, increase the free exchange of thin-film materials between vendors and their customers, and ultimately improve the accuracy of data on relationships between material composition and properties.

SRM 2841 can be ordered at http://ts.nist.gov/ts/htdocs/230/232/232.htm

National Institute of Standards and Technology (NIST)


Related Semiconductor Current Events and Semiconductor News Articles


Helping general electric upgrade the US power grid
When researchers at General Electric Co. sought help in designing a plasma-based power switch, they turned to the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL).

Watching the hidden life of materials
Researchers at McGill University have succeeded in simultaneously observing the reorganizations of atomic positions and electron distribution during the transformation of the "smart material" vanadium dioxide (VO2) from a semiconductor into a metal - in a time frame a trillion times faster than the blink of an eye.

NIST offers electronics industry 2 ways to snoop on self-organizing molecules
A few short years ago, the idea of a practical manufacturing process based on getting molecules to organize themselves in useful nanoscale shapes seemed ... well, cool, sure, but also a little fantastic.

World record in data transmission with smart circuits
Fewer cords, smaller antennas and quicker video transmission. This may be the result of a new type of microwave circuit that was designed at Chalmers University of Technology. The research team behind the circuits currently holds an attention-grabbing record. Tomorrow the results will be presented at a conference in San Diego.

Wild molecular interactions in a new hydrogen mixture
Hydrogen-the most abundant element in the cosmos-responds to extremes of pressure and temperature differently.

Crystallizing the DNA nanotechnology dream
DNA has garnered attention for its potential as a programmable material platform that could spawn entire new and revolutionary nanodevices in computer science, microscopy, biology, and more.

Towards controlled dislocations
Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type.

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes
Even as the 2014 Nobel Prize in Physics has enshrined light emitting diodes (LEDs) as the single most significant and disruptive energy-efficient lighting solution of today, scientists around the world continue unabated to search for the even-better-bulbs of tomorrow.

New 'lab-on-a-chip' could revolutionize early diagnosis of cancer
Scientists have been laboring to detect cancer and a host of other diseases in people using promising new biomarkers called "exosomes."

Princeton scientists observe elusive particle that is its own antiparticle
Princeton University scientists have observed an exotic particle that behaves simultaneously like matter and antimatter, a feat of math and engineering that could yield powerful computers based on quantum mechanics.
More Semiconductor Current Events and Semiconductor News Articles

The Essential Guide to Semiconductors

The Essential Guide to Semiconductors
by Jim Turley (Author)


The Essential Guide to Semiconductors is a complete guide to thebusiness and technology of semiconductor design and manufacturing.Conceptual enough for laypeople and nontechnical investors, yet detailedenough for technical professionals, Jim Turley explains exactly howsilicon chips are designed and built, illuminates key markets andopportunities, and shows how the entire industry "fits together."

Semiconductor Physics And Devices: Basic Principles

Semiconductor Physics And Devices: Basic Principles
by Donald A. Neamen (Author)


With its strong pedagogy, superior readability, and thorough examination of the physics of semiconductor material, Semiconductor Physics and Devices, 4/e provides a basis for understanding the characteristics, operation, and limitations of semiconductor devices. Neamen's Semiconductor Physics and Devices deals with the electrical properties and characteristics of semiconductor materials and devices. The goal of this book is to bring together quantum mechanics, the quantum theory of solids, semiconductor material physics, and semiconductor device physics in a clear and understandable way.

Semiconductor Device Fundamentals

Semiconductor Device Fundamentals
by Robert F. Pierret (Author)


Although roughly a half-century old, the field of study associated with semiconductor devices continues to be dynamic and exciting. New and improved devices are being developed at an almost frantic pace. While the number of devices in complex integrated circuits increases and the size of chips decreases, semiconductor properties are now being engineered to fit design specifications. Semiconductor Device Fundamentals serves as an excellent introduction to this fascinating field. Based in part on the Modular Series on Solid State Devices, this textbook explains the basic terminology, models, properties, and concepts associated with semiconductors and semiconductor devices. The book provides detailed insight into the internal workings of "building block" device structures and systematically...

Microchip Fabrication, Sixth Edition: A Practical Guide to Semiconductor Processing

Microchip Fabrication, Sixth Edition: A Practical Guide to Semiconductor Processing
by Peter Van Zant (Author)


The most complete, current guide to semiconductor processing Fully revised to cover the latest advances in the field, Microchip Fabrication, Sixth Edition explains every stage of semiconductor processing, from raw material preparation to testing to packaging and shipping the finished device. This practical resource provides easy-to-understand information on the physics, chemistry, and electronic fundamentals underlying the sophisticated manufacturing materials and processes of modern semiconductors. State-of-the-art processes and cutting-edge technologies used in the patterning, doping, and layering steps are discussed in this new edition. Filled with detailed illustrations and real-world examples, this is a comprehensive, up-to-date introduction to the technological backbone of the...

Semiconductor Principles and Applications

Semiconductor Principles and Applications
by NJATC NJATC (Author)


From expanded coverage of diodes, troubleshooting power supplies, and transistor applications, to the latest technologies in the field, this updated edition of Semiconductor Principles and Applications will provide readers with the most current information in the field. Valuable as either a learning tool or a reference guide, the straightforward, clear explanations are accompanied by detailed diagrams, illustrations, and real-world applications for a complete and thorough learning experience. The book begins with an introduction to key concepts such as semiconductor principles and characteristics, diode principles and characteristics, and then builds on this knowledge to tackle more advanced topics such as integrated circuits and microprocessors. With the help of the book's built-in...

Practical Electronics for Inventors

Practical Electronics for Inventors
by Paul Scherz (Author), Simon Monk (Author)


THE ELECTRONICS KNOW-HOW YOU NEED TO BECOME A SUCCESSFUL INVENTOR "If there is a successor to Make: Electronics, then I believe it would have to be Practical Electronics for Inventors....perfect for an electrical engineering student or maybe a high school student with a strong aptitude for electronics....I’ve been anxiously awaiting this update, and it was well worth the wait."--GeekDad (Wired.com) Spark your creativity and gain the electronics skills required to transform your innovative ideas into functioning gadgets. This hands-on, updated guide outlines electrical principles and provides thorough, easy-to-follow instructions, schematics, and illustrations. Find out how to select components, safely assemble circuits, perform error tests, and build plug-and-play prototypes. Practical...

Advanced Semiconductor Fundamentals (2nd Edition)

Advanced Semiconductor Fundamentals (2nd Edition)
by Robert F. Pierret (Author)


Focus on silicon-based semiconductors—a real-world, market-dominating issue that will appeal to people looking to apply what they are learning. Comprehensive coverage includes treatment of basic semiconductor properties, elements of Quantum Mechanics, energy band theory, equilibrium carrier statistics, recombination-generation processes, and drift/diffusion carrier transport. Practicing engineers and scientists will find this volume helpful, whether it be self-study, reference, or review.

Fabless: The Transformation of the Semiconductor Industry

Fabless: The Transformation of the Semiconductor Industry
by Daniel Nenni (Author), Paul McLellan (Contributor)


The purpose of this book is to illustrate the magnificence of the fabless semiconductor ecosystem, and to give credit where credit is due. We trace the history of the semiconductor industry from both a technical and business perspective. We argue that the development of the fabless business model was a key enabler of the growth in semiconductors since the mid-1980s. Because business models, as much as the technology, are what keep us thrilled with new gadgets year after year, we focus on the evolution of the electronics business. We also invited key players in the industry to contribute chapters. These “In Their Own Words” chapters allow the heavyweights of the industry to tell their corporate history for themselves, focusing on the industry developments (both in technology and...

Physics of Semiconductor Devices

Physics of Semiconductor Devices
by Simon M. Sze (Author), Kwok K. Ng (Author)


The Third Edition of the standard textbook and reference in the field of semiconductor devicesThis classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices.Designed for graduate textbook adoptions and reference needs, this new edition includes:A complete update of the latest developmentsNew devices such as...

Handbook of Semiconductor Manufacturing Technology, Second Edition

Handbook of Semiconductor Manufacturing Technology, Second Edition
by Yoshio Nishi (Editor), Robert Doering (Editor)


Retaining the comprehensive and in-depth approach that cemented the bestselling first edition's place as a standard reference in the field, the Handbook of Semiconductor Manufacturing Technology, Second Edition features new and updated material that keeps it at the vanguard of today's most dynamic and rapidly growing field. Iconic experts Robert Doering and Yoshio Nishi have again assembled a team of the world's leading specialists in every area of semiconductor manufacturing to provide the most reliable, authoritative, and industry-leading information available.

Stay Current with the Latest Technologies
In addition to updates to nearly every existing chapter, this edition features five entirely new contributions on…
Silicon-on-insulator (SOI) materials and...

© 2014 BrightSurf.com