Science Current Events | Science News |

Nobel laureate Burton Richter to speak about future of particle physics

February 16, 2007

Particle physics is about to transform our thinking once again. Experiments of the last 15 years suggest new forms of matter, new forces of nature and perhaps even new dimensions of space and time. Pinning down the new ideas will require more data from larger and more expensive machines-at a time when funding is more difficult than ever to secure.

"As Dickens wrote, it is the best of times and the worst of times," says Nobel laureate Burton Richter, the Paul Pigott Professor in the Physical Sciences, Emeritus, at the Stanford Linear Accelerator Center and a pioneer of the particle colliders that now dominate high-energy physics. "We are in the midst of a revolution in understanding, but accelerator facilities are shutting down before new ones can open, and there is great uncertainty about future funding."

On Feb. 16, at the annual meeting of the American Association for the Advancement of Science in San Francisco, Richter will speak about the future course for elementary particle physics. He will offer a short overview of current research and explain his view of the most important opportunities for the field today.

Over the last 15 years, physicists discovered that they understand much less of the universe than they thought. No longer do they believe that luminous matter alone fills up the vacuum of space. Instead, two mysterious substances-dark matter and dark energy-comprise 96 percent of the universe. Neutrinos, very light elementary particles that stream from the sun, change from one type of matter to another as they travel close to the speed of light. And the Standard Model-the theory once believed to describe all fundamental interactions-no longer describes all that we observe.

The next 15 years are likely to answer some questions and raise new ones, Richter says. Physicists hope to find what is beyond the Standard Model, what at least some of the dark matter is made of and what is driving the accelerating expansion of the universe. The next few years may even see an experimental test of theories that posit more dimensions than just three of space and one of time, including string theory.

Yet none of this can happen without new experiments and new machinery, Richter says. In choosing which experiments to fund, the particle physics community must make choices that will severely limit the pace of discovery in some areas.

"This is a time where we cannot afford the merely good, but must focus on the really important if we are to continue our quest to learn what the universe is made of and how it works," Richter says.

In the lecture, Richter will present his views on which experiments must be funded and which will have to wait. Specifically, he will discuss the Large Hadron Collider (LHC), the proposed International Linear Collider (ILC), the need for accelerator research and development, the Joint Dark Energy Mission (JDEM) and Large Synoptic Survey Telescope (LSST) astroparticle experiments, and the critical questions that must be addressed regarding neutrinos.

The experiments

The LHC, now under construction at the European Laboratory for Particle Physics (CERN), will begin colliding protons at the end of this year. Researchers hope this machine will finally reveal the Higgs boson, a particle theorized to give mass to matter. The LHC also may discover whether particles have supersymmetric partners and determine if extra dimensions exist, among other things.

If built, the ILC would offer a more detailed perspective of what the LHC finds. By colliding electrons and positrons at higher energies than ever before, the machine would allow physicists to see new particles in unprecedented detail. Experiments at the ILC also could help explain the dominance of matter over antimatter in the universe by exploring "charge-parity violation," an asymmetry between the behavior of matter and antimatter, and could identify the particles predicted by theories of supersymmetry and extra dimensions. If the LHC turns up nothing, however, it is unlikely that the ILC will get built, Richter says.

Searches for dark matter and dark energy underground, on the Earth's surface and in space also will be an essential element of progress, Richter says. This area includes JDEM, a space-based instrument to search for supernovae, and LSST, a ground-based telescope that will provide digital imaging of faint astronomical objects across the entire sky.

In the coming years, various neutrino experiments with reactors, accelerators and cosmic rays may even offer insight into charge-parity violation.

"There's a huge opportunity here," he says. "While we may not be able to do all of this as fast as we would like, we need to get the really important done even if it takes longer than we would wish. The results will tell us much more about the universe and how it works."

Also speaking at the session are Nobel laureate David Gross of the University of California-Santa Barbara (matter, space and time); Young-Kee Kim of the University of Chicago (today's particle physics frontier); Philip Bryant of CERN (the LHC); Albert De Roeck of CERN (the LHC); and Jonathan Bagger of Johns Hopkins University (the ILC).

Stanford University

Related Particle Physics Current Events and Particle Physics News Articles

OU astrophysicists detect most luminous diffuse gamma-ray emission from Arp 220
A University of Oklahoma team has detected for the first time the most luminous gamma-ray emission from a galaxy--the merging galaxy Arp 220 is the nearest ultraluminous infrared galaxy to Earth, and it reveals the hidden extreme energetic processes in galaxies.

Photon collisions: Photonic billiards might be the newest game!
When one snooker ball hits another, both spring away from each other in an elastic manner.

A quasiparticle collider
In the early 1900s, Ernest Rutherford shot alpha particles onto gold foils and concluded from their scattering properties that atoms contain their mass in a very small nucleus.

Getting a better measure of spin with diamond
Diamonds are one of the most coveted gemstones. But while some may want the perfect diamond for its sparkle, physicists covet the right diamonds to perfect their experiments.

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast
Nearly 10 billion years ago, the black hole at the center of a galaxy known as PKS B1424-418 produced a powerful outburst. Light from this blast began arriving at Earth in 2012.

NASA's Fermi telescope poised to pin down gravitational wave sources
On Sept. 14, waves of energy traveling for more than a billion years gently rattled space-time in the vicinity of Earth.

NREL, SLAC scientists pinpoint solar cell manufacturing process
Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and SLAC National Accelerator Laboratory have been able to pinpoint for the first time what happens during a key manufacturing process of silicon solar cells.

NASA's Fermi satellite detects first gamma-ray pulsar in another galaxy
Researchers using NASA's Fermi Gamma-ray Space Telescope have discovered the first gamma-ray pulsar in a galaxy other than our own. The object sets a new record for the most luminous gamma-ray pulsar known.

Antimatter not so different after all
Due to the diligence of a Rice University student and his calculations, humanity now knows a little more about the universe.

Researchers observe surprising phase transition
An ultrapure material taken to pressures greater than that in the depths of the ocean and chilled to temperatures colder than outer space has revealed an unexpected phase transition that crosses two different phase categories.
More Particle Physics Current Events and Particle Physics News Articles

Particle Physics: A Very Short Introduction

Particle Physics: A Very Short Introduction
by Frank Close (Author)

In Particle Physics: A Very Short Introduction, best-selling author Frank Close provides a compelling and lively introduction to the fundamental particles that make up the universe. The book begins with a guide to what matter is made up of and how it evolved, and goes on to describe the fascinating and cutting-edge techniques used to study it. The author discusses particles such as quarks, electrons, and the neutrino, and exotic matter and antimatter. He also investigates the forces of nature, accelerators and detectors, and the intriguing future of particle physics. This book is essential reading for general readers interested in popular science, students of physics, and scientists at all levels.

About the Series: Combining authority with wit, accessibility, and style, Very Short...

The Particle at the End of the Universe: How the Hunt for the Higgs Boson Leads Us to the Edge of a New World

The Particle at the End of the Universe: How the Hunt for the Higgs Boson Leads Us to the Edge of a New World
by Sean Carroll (Author)

Winner of the prestigious 2013 Royal Society Winton Prize for Science Books

“A modern voyage of discovery.” —Frank Wilczek, Nobel Laureate, author of The Lightness of Being

The Higgs boson is one of our era’s most fascinating scientific frontiers and the key to understanding why mass exists. The most recent book on the subject, The God Particle, was a bestseller. Now, Caltech physicist Sean Carroll documents the doorway that is opening—after billions of dollars and the efforts of thousands of researchers at the Large Hadron Collider in Switzerland—into the mind-boggling world of dark matter. The Particle at the End of the Universe has it all: money and politics, jealousy and self-sacrifice, history and cutting-edge physics—all grippingly told by a rising star...

Introduction to Elementary Particles

Introduction to Elementary Particles
by David Griffiths (Author)

In the second, revised edition of a well-established textbook, the author strikes a balance between quantitative rigor and intuitive understanding, using a lively, informal style. The first chapter provides a detailed historical introduction to the subject, while subsequent chapters offer a quantitative presentation of the Standard Model. A simplified introduction to the Feynman rules, based on a "toy" model, helps readers learn the calculational techniques without the complications of spin. It is followed by accessible treatments of quantum electrodynamics, the strong and weak interactions, and gauge theories. New chapters address neutrino oscillations and prospects for physics beyond the Standard Model. The book contains a number of worked examples and many end-of-chapter problems....

Particle Physics: A Beginner's Guide (Beginner's Guides)

Particle Physics: A Beginner's Guide (Beginner's Guides)
by Brian R. Martin (Author)

Gaining a following since the launch of the infamous Large Hadron Collider, particle physics explores our most fundamental and mind-blowing questions: How did the Universe start? What are we made of? How small is the smallest thing? Without presuming any prior scientific knowledge, Brian R. Martin takes readers on a wide-ranging tour of the field, from its beginnings in nuclear physics to the discovery of quarks and cutting-edge research into string theory, the mystery of antimatter, and the current search for the elusive “God particle.” Brian R. Martin is emeritus professor of physics at University College London, where he chaired the physics department until 2004.

Elementary Particle Physics for Enthusiasts

Elementary Particle Physics for Enthusiasts
by Yoshiki Teramoto (Author)

This introductory book, intended for general audiences, covers a broad range of subjects in the elementary particle physics: gauge theory, quark model, parton model, quantum chromodynamics, Weinberg-Salam theory, CP-violation, spontaneous symmetry breaking, Higgs mechanism, Higgs particle, etc. Those subjects are explained, plainly and mostly without using equations. Revisions: Apr 22, 2016. In the ch.2, a mistake was fixed at calculating the change of mass by lifting the mass. Several translation errors to English from Japanese were fixed.

Modern Particle Physics

Modern Particle Physics
by Mark Thomson (Author)

Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at...

Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures

Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures
by Richard P. Feynman (Author), Steven Weinberg (Author)

Developing a theory that seamlessly combines relativity and quantum mechanics, the most important conceptual breakthroughs in twentieth century physics, has proved to be a difficult and ongoing challenge. This book details how two distinguished physicists and Nobel laureates have explored this theme in two lectures given in Cambridge, England, in 1986 to commemorate the famous British physicist Paul Dirac. Given for nonspecialists and undergraduates, the talks transcribed in Elementary Particles and the Laws of Physics focus on the fundamental problems of physics and the present state of our knowledge. Professor Feynman examines the nature of antiparticles, and in particular the relationship between quantum spin and statistics. Professor Weinberg speculates on how Einstein's theory...

Modern Elementary Particle Physics: Explaining and Extending the Standard Model

Modern Elementary Particle Physics: Explaining and Extending the Standard Model
by Gordon Kane (Author)

This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak...

Particle Physics for Non-physicists: a Tour of the Microcosmos (The Great Courses)

Particle Physics for Non-physicists: a Tour of the Microcosmos (The Great Courses)
by Steven Pollock (Author)

Lecture Transcript and Course Guidebook

Introducing Particle Physics: A Graphic Guide

Introducing Particle Physics: A Graphic Guide
by Tom Whyntie (Author), Oliver Pugh (Illustrator)

What really happens at the most fundamental levels of nature? From the earliest history of the atomic theory through to the Higgs boson, practicing physicist and CERN contributor Tom Whyntie gives us a mind-expanding tour of cutting-edge science in this brand new graphic guide.

© 2017