Science Current Events | Science News | Brightsurf.com
 

Cataloging the Structural Variations in Human Genetics

May 10, 2007
A major new effort to uncover the medium- and large-scale genetic differences between humans may soon reveal DNA sequences that contribute to a wide range of diseases, according to a paper by Howard Hughes Medical Institute investigator Evan Eichler and 17 colleagues published in the May 10, 2007, Nature. The undertaking will help researchers identify structural variations in DNA sequences, which Eichler says amount to as much as five to ten percent of the human genome.

Past studies of human genetic differences usually have focused on the individual "letters" or bases of a DNA sequence. But the genetic differences between humans amount to more than simple spelling errors. "Structural changes — insertions, duplications, deletions, and inversions of DNA — are extremely common in the human population," says Eichler. "In fact, more bases are involved in structural changes in the genome than are involved in single-base-pair changes."

In some cases, individual genes appear in multiple copies because of duplications of DNA segments. In other cases, segments of DNA appear in some people but not others, which means that the "reference" human genome produced by the Human Genome Project is incomplete. "We're finding new sequence in the human genome that is not in the reference sequence," Eichler says.

These structural changes can influence both disease susceptibility and the normal functioning and appearance of the body. Color-blindness, increased risk of prostate cancer, and susceptibility to some forms of cardiovascular disease result from deletions of particular genes or parts of genes. Extra copies of a gene known as CC3L1 reduce a person's susceptibility to HIV infection and progression to AIDS. Lower than normal quantities of other genes can lead to intestinal or kidney diseases.

Variation in the number of genes or in gene regulation caused by structural rearrangements may also contribute to more common diseases. "The million dollar question is what is the genetic basis of diseases like diabetes, hypertension, and high cholesterol levels?" says Eichler. " We know there is a genetic factor, but what is the role of single base pair changes versus structural changes?"

The project Eichler and his colleagues describe in their paper will help answer this question. Using DNA from 62 people who were studied as part of the International HapMap Project, they are creating bacterial "libraries" of DNA segments for each person. The ends of the segments are then sequenced to uncover evidence of structural variation. Whenever such evidence is found, the entire DNA segment is sequenced to catalog all of the genetic differences between the segment and the reference sequence.

The result, says Eichler, will be a tool that geneticists can use to associate structural variation with particular diseases. "It might be that if I have an extra copy of gene A, my threshold for disease X may be higher or lower." Geneticists will then be able to test, or genotype, large numbers of individuals who have a particular disease to look for structural variants that they have in common. If a given variant is contributing to a disease, it will occur at a higher frequency in people with the disease.

Knowing about structural variation in the human genome will also allow geneticists to analyze single-base-pair changes more effectively, according to Aravinda Chakravarti, a geneticist at The Johns Hopkins University School of Medicine who was not a coauthor of the paper. "We have to look at structural variants from a different perspective, because they are adding or subtracting something from the genome," Chakravarti says. By understanding the patterns of both structural variants and single-base-pair changes in the population, "we'll learn a lot." To use both kinds of information in tandem, Eichler and his colleagues plan to incorporate the structural information they gather into existing databases on single-base-pair changes.

The project, which is being funded by the National Human Genome Research Institute at the National Institutes of Health, is difficult and expensive, Eichler admits. "It's a lot of work, because it's essentially doing 62 additional human genome projects," he says. "Having been involved in the first one, I swore I would never do it again. But in this case we're looking at the coolest parts of the genome."

Howard Hughes Medical Institute


Related Human Genetics Current Events and Human Genetics News Articles


One gene links susceptibility to rare infections with predisposition to autoimmune disease
The mutations were familiar, but the patients' conditions seemed baffling at first. A team lead by Rockefeller University researchers had linked variations in an immune gene to rare bacterial infections.

Chemical present in broccoli, other vegetables may improve autism symptoms
A small study led by investigators at MassGeneral Hospital for Children (MGHfC) and Johns Hopkins University School of Medicine has found evidence that daily treatment with sulforaphane - a molecule found in foods such as broccoli, cauliflower and cabbage - may improve some symptoms of autism spectrum disorders.

Oral capsule as effective as invasive procedures for delivery of fecal transplant
A noninvasive method of delivering a promising therapy for persistent Clostridium difficile (C. difficile) infection appears to be as effective as treatment via colonoscopy or through a nasogastric tube.

Novel culture system replicates course of Alzheimer's disease, confirms amyloid hypothesis
An innovative laboratory culture system has succeeded, for the first time, in reproducing the full course of events underlying the development of Alzheimer's disease.

Using a novel biological aging clock, UCLA researchers find obesity accelerates aging of the liver
Using a recently developed biomarker of aging known as an epigenetic clock, UCLA researchers working closely with a German team of investigators have found for the first time that obesity greatly accelerates aging of the liver.

Dartmouth Researchers Develop Reproducibility Score for SNPs Associated with Human Disease in GWAS
To reduce false positives when identifying genetic variations associated with human disease through genome-wide association studies (GWAS), Dartmouth researchers have identified nine traits that are not dependent on P values to predict single nucleotide polymorphisms (SNP) reproducibility.

Massachusetts General study suggests neurobiological basis of human-pet relationship
It has become common for people who have pets to refer to themselves as "pet parents," but how closely does the relationship between people and their non-human companions mirror the parent-child relationship?

Vitamin D significantly improves symptoms of winter-related atopic dermatitis in children
A study conducted in more than 100 Mongolian schoolchildren found that daily treatment with a vitamin D supplement significantly reduced the symptoms of winter-related atopic dermatitis, a type of eczema.

DNA 'bias' may keep some diseases in circulation, Penn biologists show
It's an early lesson in genetics: we get half our DNA from Mom, half from Dad.

Synthetic sperm protein raises the chance for successful in vitro fertilization
Having trouble getting pregnant-even with IVF? Here's some hope: A new research report published in October 2014 issue of The FASEB Journal, explains how scientists developed a synthetic version of a sperm-originated protein known as PAWP, which induced embryo development in human and mouse eggs similar to the natural triggering of embryo development by the sperm cell during fertilization.
More Human Genetics Current Events and Human Genetics News Articles

Human Genetics

Human Genetics
by Ricki Lewis (Author)


Today, human genetics is for everyone. It is about variation more than about illnesses, and increasingly about the common rather than about the rare. Once an obscure science or an occasional explanation for an odd collection of symptoms, human genetics is now part of everyday conversation. By coming to know genetic backgrounds, people can control their environments in more healthy ways. Genetic knowledge is, therefore, both informative and empowering. The 10th edition of Human Genetics: Concepts and Applications shows students how and why that is true. Users who purchase Connect Plus receive access to the full online ebook version of the textbook.

Human Genetics: Concepts and Applications

Human Genetics: Concepts and Applications
by Ricki Lewis (Author)


Human Genetics: Concepts and Applications, ninth edition, is a text that clearly explains what genes are, how they function, how they interact with the environment, and how our understanding of genetics has changed since completion of the human genome project. Meticulously updated, focused on concepts, and rich with personal stories from people whose lives are dramatically affected by the principles being discussed, Human Genetics is a textbook that will prepare the next generation of citizens for the decisions that lie ahead.

Human Genetics and Genomics, Includes Wiley E-Text

Human Genetics and Genomics, Includes Wiley E-Text
by Bruce R. Korf (Author), Mira B. Irons (Author)


This fourth edition of the best-selling textbook, Human Genetics and Genomics, clearly explains the key principles needed by medical and health sciences students, from the basis of molecular genetics, to clinical applications used in the treatment of both rare and common conditions.A newly expanded Part 1, Basic Principles of Human Genetics, focuses on introducing the reader to key concepts such as Mendelian principles, DNA replication and gene expression. Part 2, Genetics and Genomics in Medical Practice, uses case scenarios to help you engage with current genetic practice.Now featuring full-color diagrams, Human Genetics and Genomics has been rigorously updated to reflect today’s genetics teaching, and includes updated discussion of genetic risk assessment, “single gene”...

Human Biology - Genetics

Human Biology - Genetics
by CK-12 Foundation


The Genetics Student Edition book is one of ten volumes making up the Human Biology curriculum, an interdisciplinary and inquiry-based approach to the study of life science.

Human Genetics: The Basics

Human Genetics: The Basics
by Ricki Lewis (Author)


Human genetics has blossomed from an obscure branch of biological science and occasional explanation for exceedingly rare disorders to a field all of its own that affects everyone. Human Genetics: The Basics introduces the key questions and issues in this emerging field, including: The common ancestry of all humanity The role of genes in sickness and health Debates over the use of genetic technology Written in an engaging, narrative manner, this concise introduction is an ideal starting point for anyone who wants to know more about genes, DNA, and the genetic ties that bind us all.

Human Genetics:: From Molecules to Medicine

Human Genetics:: From Molecules to Medicine
by Christian Patrick, M.D., Ph.D. Schaaf (Author), Johannes, Dr., Ph.D. Zschocke (Author), Lorraine, Dr. Potocki (Author)


Core genetics text for medical students in their 1st or 2nd year. Unique in its organ system approach, this textbook teaches concepts in medical genetics by exploring disease entities within the context of the organ system in which they most frequently present. TOP 30 genetic conditions covered in a tear-out apple flap or C2. Section on information from a patient and familys point of view helps teach students about key obstacles for patients suffering from severe genetic conditions. Adapted from a successful German text published by Springer.

Human Molecular Genetics, Fourth Edition

Human Molecular Genetics, Fourth Edition
by Tom Strachan (Author), Andrew Read (Author)


Human Molecular Genetics is an established and class-proven textbook for upper-level undergraduates and graduate students which provides an authoritative and integrated approach to the molecular aspects of human genetics. While maintaining the hallmark features of previous editions, the Fourth Edition has been completely updated. It includes new Key Concepts at the beginning of each chapter and annotated further reading at the conclusion of each chapter, to help readers navigate the wealth of information in this subject. The text has been restructured so genomic technologies are integrated throughout, and next generation sequencing is included. Genetic testing, screening, approaches to therapy, personalized medicine, and disease models have been brought together in one section. Coverage...

Human Genetics

Human Genetics
by Ricki Lewis (Author)


Human Genetics, Eighth Edition, is a non-science majors human genetics text that clearly explains what genes are, how they function, how they interact with the environment, and how our understanding of genetics has changed since completion of the human ge

Human Evolutionary Genetics: Origins, Peoples and Disease

Human Evolutionary Genetics: Origins, Peoples and Disease
by Mark A. Jobling (Author), Mathew Hurles (Author), Chris Tyler-Smith (Author)


Human Evolutionary Genetics is a groundbreaking text which for the first time brings together molecular genetics and genomics to the study of the origins and movements of human populations. Starting with an overview of molecular genomics for the non-specialist (which can be a useful review for those with a more genetic background), the book shows how data from the post-genomic era can be used to examine human origins and the human colonisation of the planet, richly illustrated with genetic trees and global maps. For the first time in a textbook, the authors outline how genetic data and the understanding of our origins which emerges, can be applied to contemporary population analyses, including genealogies, forensics and medicine.

Human Evolutionary Genetics

Human Evolutionary Genetics
by Mark Jobling (Author), Edward Hollox (Author), Matthew Hurles (Author), Toomas Kivisild (Author), Chris Tyler-Smith (Author)


Now in full-color, the Second Edition of Human Evolutionary Genetics has been completely revised to cover the rapid advances in the field since publication of the highly regarded First Edition. Written for upper-level undergraduate and graduate students, it is the only textbook to integrate genetic, archaeological, and linguistic perspectives on human evolution, and to offer a genomic perspective, reflecting the shift from studies of specific regions of the genome towards comprehensive genomewide analyses of human genetic diversity. Human Evolutionary Genetics is suitable for courses in Genetics, Evolution, and Anthropology. Those readers with a background in anthropology will find that the streamlined genetic analysis material contained in the Second Edition is more accessible. The new...

© 2014 BrightSurf.com