Science Current Events | Science News | Brightsurf.com
 

Nanotube forests grown on silicon chips for future computers, electronics

October 02, 2007
Engineers have shown how to grow forests of tiny cylinders called carbon nanotubes onto the surfaces of computer chips to enhance the flow of heat at a critical point where the chips connect to cooling devices called heat sinks.

The carpetlike growth of nanotubes has been shown to outperform conventional "thermal interface materials." Like those materials, the nanotube layer does not require elaborate clean-room environments, representing a possible low-cost manufacturing approach to keep future chips from overheating and reduce the size of cooling systems, said Placidus B. Amama, a postdoctoral research associate at the Birck Nanotechnology Center in Purdue's Discovery Park.

Researchers are trying to develop new types of thermal interface materials that conduct heat more efficiently than conventional materials, improving overall performance and helping to meet cooling needs of future chips that will produce more heat than current microprocessors. The materials, which are sandwiched between silicon chips and the metal heat sinks, fill gaps and irregularities between the chip and metal surfaces to enhance heat flow between the two.

The method developed by the Purdue researchers enables them to create a nanotube interface that conforms to a heat sink's uneven surface, conducting heat with less resistance than comparable interface materials currently in use by industry, said doctoral student Baratunde A. Cola.

Findings were detailed in a research paper that appeared in September's issue of the journal Nanotechnology. The paper was written by Amama; Cola; Timothy D. Sands, director of the Birck Nanotechnology Center and the Basil S. Turner Professor of Materials Engineering and Electrical and Computer Engineering; and Xianfan Xu and Timothy S. Fisher, both professors of mechanical engineering.

Better thermal interface materials are needed either to test computer chips in manufacturing or to keep chips cooler during operation in commercial products.

"In a personal computer, laptop and portable electronics, the better your thermal interface material, the smaller the heat sink and overall chip-cooling systems have to be," Cola said.

Heat sinks are structures that usually contain an array of fins to increase surface contact with the air and improve heat dissipation, and a fan often also is used to blow air over the devices to cool chips.

Conventional thermal interface materials include greases, waxes and a foil made of a metal called indium. All of these materials, however, have drawbacks. The greases don't last many cycles of repeatedly testing chips on the assembly line. The indium foil doesn't make good enough contact for optimum heat transfer, Fisher said.

The Purdue researchers created templates from branching molecules called dendrimers, forming these templates on a silicon surface. Then, metal catalyst particles that are needed to grow the nanotubes were deposited inside cavities between the dendrimer branches. Heat was then applied to the silicon chip, burning away the polymer and leaving behind only the metal catalyst particles.

The engineers then placed the catalyst particle-laden silicon inside a chamber and exposed it to methane gas. Microwave energy was applied to break down the methane, which contains carbon. The catalyst particles prompted the nanotubes to assemble from carbon originating in the methane, and the tubes then grew vertically from the surface of the silicon chip.

"The dendrimer is a vehicle to deliver the cargo of catalyst particles, making it possible for us to seed the carbon nanotube growth right on the substrate," Amama said. "We are able to control the particle size - what ultimately determines the diameters of the tubes - and we also have control over the density, or the thickness of this forest of nanotubes. The density, quality and diameter are key parameters in controlling the heat-transfer properties."

The catalyst particles are made of "transition metals," such as iron, cobalt, nickel or palladium. Because the catalyst particles are about 10 nanometers in diameter, they allow the formation of tubes of similar diameter.

The branching dendrites are tipped with molecules called amines, which act as handles to stick to the silicon surface.

"This is important because for heat-transfer applications, you want the nanotubes to be well-anchored," Amama said.

Researchers usually produce carbon nanotubes separately and then attach them to the silicon chips or mix them with a polymer and then apply them as a paste.

"Our direct growth approach, however, addresses the critical heat-flow path, which is between the chip surface and the nanotubes themselves," Fisher said. "Without this direct connection, the thermal performance suffers greatly."

Because the dendrimers have a uniform composition and structure, the researchers were able to control the distribution and density of catalyst particles.

The research team also has been able to control the number of "defect sites" in the lattice of carbon atoms making up the tubes, creating tubes that are more flexible. This increased flexibility causes the nanotube forests to conform to the surface of the heat sink, making for better contact and improved heat conduction.

"The tubes bend like toothbrush bristles, and they stick into the gaps and make a lot of real contact," Cola said.

The carbon nanotubes were grown using a technique called microwave plasma chemical vapor deposition, a relatively inexpensive method for manufacturing a thermal-interface material made of carbon nanotubes, Fisher said.

"The plasma deposition approach allows us great flexibility in controlling the growth environment and has enabled us to grow carbon nanotube arrays over a broad range of substrate temperatures," Fisher said.

The research has been funded by NASA through the Institute for Nanoelectronics and Computing, based at Purdue's Discovery Park. Cola also received support through a fellowship from Intel Corp. and Purdue.

Purdue University


Related Carbon Nanotubes Current Events and Carbon Nanotubes News Articles


Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP
The second law of thermodynamics tells us that all systems evolve toward a state of maximum entropy, wherein all energy is dissipated as heat, and no available energy remains to do work.

Buckyballs offer environmental benefits
Treated buckyballs not only remove valuable but potentially toxic metal particles from water and other liquids, but also reserve them for future use, according to scientists at Rice University.

Worms lead way to test nanoparticle toxicity
The lowly roundworm is the star of an ambitious Rice University project to measure the toxicity of nanoparticles.

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables
New battery technology from the University of Michigan should be able to prevent the kind of fires that grounded Boeing 787 Dreamliners in 2013.

Carbon nanoballs can greatly contribute to sustainable energy supply
Researchers at Chalmers University of Technology have discovered that the insulation plastic used in high-voltage cables can withstand a 26 per cent higher voltage if nanometer-sized carbon balls are added.

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons
A team of chemists at Nagoya University has synthesized novel transition metal-complexed cycloparaphenylenes (CPPs) that enable selective monofunctionalization of CPPs for the first time, opening doors to the construction of unprecedented nanocarbons.

Carbon nanotube finding could lead to flexible electronics with longer battery life
University of Wisconsin-Madison materials engineers have made a significant leap toward creating higher-performance electronics with improved battery life -- and the ability to flex and stretch.

Stanford team combines logic, memory to build a 'high-rise' chip
At a conference in San Francisco, a Stanford team will reveal how to build high-rise chips that could leapfrog the performance of the single-story logic and memory chips on today's circuit cards.

'Trojan horse' proteins used to target hard-to-reach cancers
Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degener

Detecting gases wirelessly and cheaply
MIT chemists have devised a new way to wirelessly detect hazardous gases and environmental pollutants, using a simple sensor that can be read by a smartphone.
More Carbon Nanotubes Current Events and Carbon Nanotubes News Articles

Carbon Nanotube Science: Synthesis, Properties and Applications

Carbon Nanotube Science: Synthesis, Properties and Applications
by Peter J. F. Harris (Author)


Carbon nanotubes represent one of the most exciting research areas in modern science. These molecular-scale carbon tubes are the stiffest and strongest fibres known, with remarkable electronic properties, and potential applications in a wide range of fields. Carbon Nanotube Science is the most concise, accessible book for the field, presenting the basic knowledge that graduates and researchers need to know. Based on the successful Carbon Nanotubes and Related Structures, this new book focuses solely on carbon nanotubes, covering the major advances made in recent years in this rapidly developing field. Chapters focus on electronic properties, chemical and bimolecular functionalisation, nanotube composites and nanotube-based probes and sensors. The book begins with a comprehensive...

Physical Properties of Carbon Nanotubes

Physical Properties of Carbon Nanotubes
by Riichiro Saito (Author), R. Saito (Editor), M. S. Dresselhaus (Editor)


This text is intended for researchers who want to perform theoretical analysis of carbon nanotubes. It can be used by graduate students in a solid state physics to learn how to investigate the structure of carbon nanotubes, its electronic and vibrational properties.

Carbon Nanotube and Graphene Device Physics

Carbon Nanotube and Graphene Device Physics
by H.-S. Philip Wong (Author), Deji Akinwande (Author)


Explaining the properties and performance of practical nanotube devices and related applications, this is the first introductory textbook on the subject. All the fundamental concepts are introduced, so that readers without an advanced scientific background can follow all the major ideas and results. Additional topics covered include nanotube transistors and interconnects, and the basic physics of graphene. Problem sets at the end of every chapter allow readers to test their knowledge of the material covered and gain a greater understanding of the analytical skill sets developed in the text. This is an ideal textbook for senior undergraduate and graduate students taking courses in semiconductor device physics and nanoelectronics. It is also a perfect self-study guide for professional...

Carbon Nanotubes: Theoretical Concepts and Research Strategies for Engineers

Carbon Nanotubes: Theoretical Concepts and Research Strategies for Engineers
by A. K. Haghi (Author), Sabu Thomas (Author)


This book presents the diversity of recent advances in carbon nanotubes from a broad perspective that will be useful for scientists as well as for graduate students and engineers. Presenting leading-edge research in this dynamic field, this volume is an introduction to the physical concepts needed for investigating carbon nanotubes and other one-dimensional solid-state systems. Written for a wide scientific readership, each chapter consists of an instructive approach to the topic and sustainable ideas for solutions. Carbon nanotubes, with their extraordinary mechanical and unique electronic properties, have garnered much attention in recent years. With a broad range of potential applications, including nanoelectronics, composites, chemical sensors, biosensors, microscopy,...

Carbon Nanotubes and Graphene, Second Edition

Carbon Nanotubes and Graphene, Second Edition
by Kazuyoshi Tanaka (Editor), S. Iijima (Editor)


Carbon Nanotubes and Graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much expanded second edition reference supports knowledge discovery, production of impactful carbon research, encourages transition between research fields, and aids the formation of emergent applications. New chapters encompass recent developments in the theoretical treatments of electronic and vibrational structures, and magnetic, optical, and electrical solid-state properties, providing a vital base to research....

Carbon Nanotubes: Synthesis, Structure, Properties and Applications

Carbon Nanotubes: Synthesis, Structure, Properties and Applications
by Mildred S. Dresselhaus (Editor), Gene Dresselhaus (Editor), Phaedon Avouris (Editor), R.E. Smalley (Editor)


After a short introduction and a brief review of the relation between carbon nanotubes, graphite and other forms of carbon, the synthesis techniques and growth mechanisms for carbon nanotubes are described. This is followed by reviews on nanotube electronic structure, electrical, optical, and mechanical properties, nanotube imaging and spectroscopy, and nanotube applications.

Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications

Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications
by Brian P. Grady (Author)


The accessible compendium of polymers in carbon nanotubes (CNTs) Carbon nanotubes (CNTs)—extremely thin tubes only a few nanometers in diameter but able to attain lengths thousands of times greater—are prime candidates for use in the development of polymer composite materials. Bringing together thousands of disparate research works, Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications covers CNT-polymers from synthesis to potential applications, presenting the basic science and engineering of this dynamic and complex area in an accessible, readable way. Designed to be of use to polymer scientists, engineers, chemists, physicists, and materials scientists, the book covers carbon nanotube fundamentals to help polymer experts understand CNTs, and polymer physics...

Carbon Nanotubes: Preparation and Properties (Polymer Science & Technology)

Carbon Nanotubes: Preparation and Properties (Polymer Science & Technology)
by Thomas W. Ebbesen (Author)


Nanomaterials are destined to become a discipline as distinct and important as polymers are in chemistry! With the realization that the structure of molecules such as C60 and C70 followed simple geometric principles, it became clear that a great variety of hollow, closed carbon structures, including nanotubes, could be made along the same principles. The modern nanotube can be thought of as the ultimate fiber formed of perfectly closed, seamless shells having unique features, such as mechanical and electronic properties that are very sensitive to its geometry and its dimensions. The nanotube has many uses:

  Physical and Chemical Properties of Carbon Nanotubes
by Lindy Bowman (Editor)


This book presents a detailed account on the various physical and chemical properties of carbon nanotubes. These are tube like quasi-one-dimensional structures of nanometer-scale diameter made up of rolled graphene sheets. Over the past two decades, carbon nanotubes have drawn noteworthy attention of chemists, electronic device engineers, material scientists and physicists due to their outstanding electronic, chemical, optical, structural and mechanical properties. Carbon nanotube researches, particularly the ones focusing on industrial applications, are fast becoming more significant. The latest research topics on the structural, electric, physical and chemical properties on carbon nanotubes have been encompassed in this all-inclusive book. Reputed researchers from across the globe have...

A Carbon Nanotube Pillar Array Ionizer for Miniature Ion Thruster Applications

A Carbon Nanotube Pillar Array Ionizer for Miniature Ion Thruster Applications


Satellites of the ‘micro’ class and smaller require scalable propulsion systems that minimize mass, volume and power. With a substantial reduction in ionizer size, ion thrusters may fulfill all of these requirements. This work explores field ionization with nanotube arrays for a highly-scalable ionizer. Fabrication and testing of carbon nanotube pillar array (CPA) ionizers is undertaken at the Nanotechnology Center, NASA Ames Research Center. The devices are built using conventional photolithography, ion beam sputtering and thermal chemical vapor deposition processes. Fabrication tribulations and solutions discovered are discussed. Testing is performed under both ultrahigh vacuum and low-pressure static gas atmospheres, with the devices configured as field electron emitters and as...

© 2015 BrightSurf.com