Science Current Events | Science News | Brightsurf.com
 

Nanotube forests grown on silicon chips for future computers, electronics

October 02, 2007
Engineers have shown how to grow forests of tiny cylinders called carbon nanotubes onto the surfaces of computer chips to enhance the flow of heat at a critical point where the chips connect to cooling devices called heat sinks.

The carpetlike growth of nanotubes has been shown to outperform conventional "thermal interface materials." Like those materials, the nanotube layer does not require elaborate clean-room environments, representing a possible low-cost manufacturing approach to keep future chips from overheating and reduce the size of cooling systems, said Placidus B. Amama, a postdoctoral research associate at the Birck Nanotechnology Center in Purdue's Discovery Park.

Researchers are trying to develop new types of thermal interface materials that conduct heat more efficiently than conventional materials, improving overall performance and helping to meet cooling needs of future chips that will produce more heat than current microprocessors. The materials, which are sandwiched between silicon chips and the metal heat sinks, fill gaps and irregularities between the chip and metal surfaces to enhance heat flow between the two.

The method developed by the Purdue researchers enables them to create a nanotube interface that conforms to a heat sink's uneven surface, conducting heat with less resistance than comparable interface materials currently in use by industry, said doctoral student Baratunde A. Cola.

Findings were detailed in a research paper that appeared in September's issue of the journal Nanotechnology. The paper was written by Amama; Cola; Timothy D. Sands, director of the Birck Nanotechnology Center and the Basil S. Turner Professor of Materials Engineering and Electrical and Computer Engineering; and Xianfan Xu and Timothy S. Fisher, both professors of mechanical engineering.

Better thermal interface materials are needed either to test computer chips in manufacturing or to keep chips cooler during operation in commercial products.

"In a personal computer, laptop and portable electronics, the better your thermal interface material, the smaller the heat sink and overall chip-cooling systems have to be," Cola said.

Heat sinks are structures that usually contain an array of fins to increase surface contact with the air and improve heat dissipation, and a fan often also is used to blow air over the devices to cool chips.

Conventional thermal interface materials include greases, waxes and a foil made of a metal called indium. All of these materials, however, have drawbacks. The greases don't last many cycles of repeatedly testing chips on the assembly line. The indium foil doesn't make good enough contact for optimum heat transfer, Fisher said.

The Purdue researchers created templates from branching molecules called dendrimers, forming these templates on a silicon surface. Then, metal catalyst particles that are needed to grow the nanotubes were deposited inside cavities between the dendrimer branches. Heat was then applied to the silicon chip, burning away the polymer and leaving behind only the metal catalyst particles.

The engineers then placed the catalyst particle-laden silicon inside a chamber and exposed it to methane gas. Microwave energy was applied to break down the methane, which contains carbon. The catalyst particles prompted the nanotubes to assemble from carbon originating in the methane, and the tubes then grew vertically from the surface of the silicon chip.

"The dendrimer is a vehicle to deliver the cargo of catalyst particles, making it possible for us to seed the carbon nanotube growth right on the substrate," Amama said. "We are able to control the particle size - what ultimately determines the diameters of the tubes - and we also have control over the density, or the thickness of this forest of nanotubes. The density, quality and diameter are key parameters in controlling the heat-transfer properties."

The catalyst particles are made of "transition metals," such as iron, cobalt, nickel or palladium. Because the catalyst particles are about 10 nanometers in diameter, they allow the formation of tubes of similar diameter.

The branching dendrites are tipped with molecules called amines, which act as handles to stick to the silicon surface.

"This is important because for heat-transfer applications, you want the nanotubes to be well-anchored," Amama said.

Researchers usually produce carbon nanotubes separately and then attach them to the silicon chips or mix them with a polymer and then apply them as a paste.

"Our direct growth approach, however, addresses the critical heat-flow path, which is between the chip surface and the nanotubes themselves," Fisher said. "Without this direct connection, the thermal performance suffers greatly."

Because the dendrimers have a uniform composition and structure, the researchers were able to control the distribution and density of catalyst particles.

The research team also has been able to control the number of "defect sites" in the lattice of carbon atoms making up the tubes, creating tubes that are more flexible. This increased flexibility causes the nanotube forests to conform to the surface of the heat sink, making for better contact and improved heat conduction.

"The tubes bend like toothbrush bristles, and they stick into the gaps and make a lot of real contact," Cola said.

The carbon nanotubes were grown using a technique called microwave plasma chemical vapor deposition, a relatively inexpensive method for manufacturing a thermal-interface material made of carbon nanotubes, Fisher said.

"The plasma deposition approach allows us great flexibility in controlling the growth environment and has enabled us to grow carbon nanotube arrays over a broad range of substrate temperatures," Fisher said.

The research has been funded by NASA through the Institute for Nanoelectronics and Computing, based at Purdue's Discovery Park. Cola also received support through a fellowship from Intel Corp. and Purdue.

Purdue University


Related Carbon Nanotubes Current Events and Carbon Nanotubes News Articles


Rebar technique strengthens case for graphene
Carbon nanotubes are reinforcing bars that make two-dimensional graphene much easier to handle in a new hybrid material grown by researchers at Rice University.

Carbon nanotubes grow in combustion flames
Professor Stephan Irle of the Institute of Transformative Bio-Molecules (WPI-ITbM) at Nagoya University and co-workers at Kyoto University, Oak Ridge National Lab (ORNL), and Chinese research institutions have revealed through theoretical simulations that the molecular mechanism of carbon nanotube (CNT) growth and hydrocarbon combustion actually share many similarities.

Diamonds are an oil's best friend
A mixture of diamond nanoparticles and mineral oil easily outperforms other types of fluid created for heat-transfer applications, according to new research by Rice University.

Nanotube coating helps shrink mass spectrometers
Nanotechnology is advancing tools likened to Star Trek's "tricorder" that perform on-the-spot chemical analysis for a range of applications including medical testing, explosives detection and food safety.

Stanford makes flexible carbon nanotube circuits more reliable and power efficient
Engineers would love to create flexible electronic devices, such as e-readers that could be folded to fit into a pocket. One approach they are trying involves designing circuits based on electronic fibers, known as carbon nanotubes (CNTs), instead of rigid silicon chips.

Scientists create powerful artificial muscle with fishing line
Researchers are using fibres from fishing line and sewing thread to create inexpensive artificial muscles that could be used in medical devices, humanoid robots, prosthetic limbs, or woven into fabrics.

Molecular Traffic Jam Makes Water Move Faster through Nanochannels
Cars inch forward slowly in traffic jams, but molecules, when jammed up, can move extremely fast.

Cooling Microprocessors with Carbon Nanotubes
"Cool it!" That's a prime directive for microprocessor chips and a promising new solution to meeting this imperative is in the offing. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a "process friendly" technique that would enable the cooling of microprocessor chips through carbon nanotubes.

Detecting Chemicals, Measuring Strain with a Pencil and Paper
Sometimes solving a problem doesn't require a high-tech solution. Sometimes, you have to look no farther than your desktop.

Solar-power device would use heat to enhance efficiency
A new approach to harvesting solar energy, developed by MIT researchers, could improve efficiency by using sunlight to heat a high-temperature material whose infrared radiation would then be collected by a conventional photovoltaic cell. This technique could also make it easier to store the energy for later use, the researchers say.
More Carbon Nanotubes Current Events and Carbon Nanotubes News Articles

Physical Properties of Carbon Nanotubes

Physical Properties of Carbon Nanotubes
by R. Saito (Editor), M. S. Dresselhaus (Editor), G. Dresselhaus (Editor)


This is an introductory textbook for graduate students and researchers from various fields of science who wish to learn about carbon nanotubes. The field is still at an early stage, and progress continues at a rapid rate. This book focuses on the basic principles behind the physical properties and gives the background necessary to understand the recent developments. Some useful computational source codes which generate coordinates for carbon nanotubes are also included in the appendix.

Carbon Nanotube and Graphene Device Physics

Carbon Nanotube and Graphene Device Physics
by H.-S. Philip Wong (Author), Deji Akinwande (Author)


Explaining the properties and performance of practical nanotube devices and related applications, this is the first introductory textbook on the subject. All the fundamental concepts are introduced, so that readers without an advanced scientific background can follow all the major ideas and results. Additional topics covered include nanotube transistors and interconnects, and the basic physics of graphene. Problem sets at the end of every chapter allow readers to test their knowledge of the material covered and gain a greater understanding of the analytical skill sets developed in the text. This is an ideal textbook for senior undergraduate and graduate students taking courses in semiconductor device physics and nanoelectronics. It is also a perfect self-study guide for professional...

Carbon Nanotube Science: Synthesis, Properties and Applications

Carbon Nanotube Science: Synthesis, Properties and Applications
by Peter J. F. Harris (Author)


Carbon nanotubes represent one of the most exciting research areas in modern science. These molecular-scale carbon tubes are the stiffest and strongest fibres known, with remarkable electronic properties, and potential applications in a wide range of fields. Carbon Nanotube Science is the most concise, accessible book for the field, presenting the basic knowledge that graduates and researchers need to know. Based on the successful Carbon Nanotubes and Related Structures, this new book focuses solely on carbon nanotubes, covering the major advances made in recent years in this rapidly developing field. Chapters focus on electronic properties, chemical and bimolecular functionalisation, nanotube composites and nanotube-based probes and sensors. The book begins with a comprehensive...

Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Topics in Applied Physics)

Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Topics in Applied Physics)
by Ado Jorio (Editor), Gene Dresselhaus (Editor), Mildred S. Dresselhaus (Editor)


Building on the success of its predecessor, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, this second volume focuses on those areas that have grown rapidly in the past few years. Contributing authors reflect the multidisciplinary nature of the book and are all leaders in their particular areas of research. Among the many topics they cover are graphene and other carbon-like and tube-like materials, which are likely to affect and influence developments in nanotubes within the next five years. Extensive use of illustrations enables you to better understand and visualize key concepts and processes.

Carbon Nanotubes: Synthesis, Structure, Properties and Applications

Carbon Nanotubes: Synthesis, Structure, Properties and Applications
by Mildred S. Dresselhaus (Editor), Gene Dresselhaus (Editor), Phaedon Avouris (Editor), R.E. Smalley (Editor)


After a short introduction and a brief review of the relation between carbon nanotubes, graphite and other forms of carbon, the synthesis techniques and growth mechanisms for carbon nanotubes are described. This is followed by reviews on nanotube electronic structure, electrical, optical, and mechanical properties, nanotube imaging and spectroscopy, and nanotube applications.

Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Topics in Applied Physics)

Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Topics in Applied Physics)
by Mildred S. Dresselhaus (Editor), Gene Dresselhaus (Editor), Phaedon Avouris (Editor), R.E. Smalley (Editor)


After a short introduction and a brief review of the relation between carbon nanotubes, graphite and other forms of carbon, the synthesis techniques and growth mechanisms for carbon nanotubes are described. This is followed by reviews on nanotube electronic structure, electrical, optical, and mechanical properties, nanotube imaging and spectroscopy, and nanotube applications.

Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications

Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications
by Brian P. Grady (Author)


The accessible compendium of polymers in carbon nanotubes (CNTs)Carbon nanotubes (CNTs)—extremely thin tubes only a few nanometers in diameter but able to attain lengths thousands of times greater—are prime candidates for use in the development of polymer composite materials. Bringing together thousands of disparate research works, Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications covers CNT-polymers from synthesis to potential applications, presenting the basic science and engineering of this dynamic and complex area in an accessible, readable way.Designed to be of use to polymer scientists, engineers, chemists, physicists, and materials scientists, the book covers carbon nanotube fundamentals to help polymer experts understand CNTs, and polymer physics to...

Advanced Materials Science and Engineering of Carbon

Advanced Materials Science and Engineering of Carbon
by Michio Inagaki Ph.D. (Author), Feiyu Kang Ph.D. (Author), Masahiro Toyoda Ph.D. (Author), Hidetaka Konno Ph.D. (Author)


Carbon materials are exceptionally diverse in their preparation, structure, texture, and applications.  In Advanced Materials Science and Engineering of Carbon, noted carbon scientist Michio Inagaki and his coauthors cover the most recent advances in carbon materials, including new techniques and processes, carbon materials synthesis, and up-to-date descriptions of current carbon-based materials, trends and applications. Beginning with the synthesis and preparation of nanocarbons, carbon nanotubes, and graphenes, the book then reviews recently developed carbonization techniques, such as templating, electrospinning, foaming, stress graphitization, and the formation of glass-like carbon. The last third of the book is devoted to applications, featuring coverage of carbon materials for...

Carbon Nanotubes: Synthesis and Properties (Nanotechnology Science and Technology)

Carbon Nanotubes: Synthesis and Properties (Nanotechnology Science and Technology)
by Ajay Kumar Mishra (Editor)


Book by

Carbon Nanotubes: Angels or Demons?

Carbon Nanotubes: Angels or Demons?
by Silvana Fiorito (Author)


The field of C-nanoparticles toxicity is, at present, fragmented and contradictory, oscillating between enthusiastic raptures and bitter disappointments. This important book presents an overall, unitary view of the carbon nanoparticle world, in which both the positive and negative aspects of these recently discovered nanomaterials are critically described and elucidated. The book provides an exhaustive account of C-nanotubes toxicity, mechanisms of toxicity and biocompatibility towards human and animal organisms as well as the entire biological environment. The detailed description of the physicochemical properties of these nano-objects will help facilitate discussion on their future applications in the biomedical field. This book is unique in its understanding, interpretation and...

© 2014 BrightSurf.com