Science Current Events | Science News |

Nanotube forests grown on silicon chips for future computers, electronics

October 02, 2007
Engineers have shown how to grow forests of tiny cylinders called carbon nanotubes onto the surfaces of computer chips to enhance the flow of heat at a critical point where the chips connect to cooling devices called heat sinks.

The carpetlike growth of nanotubes has been shown to outperform conventional "thermal interface materials." Like those materials, the nanotube layer does not require elaborate clean-room environments, representing a possible low-cost manufacturing approach to keep future chips from overheating and reduce the size of cooling systems, said Placidus B. Amama, a postdoctoral research associate at the Birck Nanotechnology Center in Purdue's Discovery Park.

Researchers are trying to develop new types of thermal interface materials that conduct heat more efficiently than conventional materials, improving overall performance and helping to meet cooling needs of future chips that will produce more heat than current microprocessors. The materials, which are sandwiched between silicon chips and the metal heat sinks, fill gaps and irregularities between the chip and metal surfaces to enhance heat flow between the two.

The method developed by the Purdue researchers enables them to create a nanotube interface that conforms to a heat sink's uneven surface, conducting heat with less resistance than comparable interface materials currently in use by industry, said doctoral student Baratunde A. Cola.

Findings were detailed in a research paper that appeared in September's issue of the journal Nanotechnology. The paper was written by Amama; Cola; Timothy D. Sands, director of the Birck Nanotechnology Center and the Basil S. Turner Professor of Materials Engineering and Electrical and Computer Engineering; and Xianfan Xu and Timothy S. Fisher, both professors of mechanical engineering.

Better thermal interface materials are needed either to test computer chips in manufacturing or to keep chips cooler during operation in commercial products.

"In a personal computer, laptop and portable electronics, the better your thermal interface material, the smaller the heat sink and overall chip-cooling systems have to be," Cola said.

Heat sinks are structures that usually contain an array of fins to increase surface contact with the air and improve heat dissipation, and a fan often also is used to blow air over the devices to cool chips.

Conventional thermal interface materials include greases, waxes and a foil made of a metal called indium. All of these materials, however, have drawbacks. The greases don't last many cycles of repeatedly testing chips on the assembly line. The indium foil doesn't make good enough contact for optimum heat transfer, Fisher said.

The Purdue researchers created templates from branching molecules called dendrimers, forming these templates on a silicon surface. Then, metal catalyst particles that are needed to grow the nanotubes were deposited inside cavities between the dendrimer branches. Heat was then applied to the silicon chip, burning away the polymer and leaving behind only the metal catalyst particles.

The engineers then placed the catalyst particle-laden silicon inside a chamber and exposed it to methane gas. Microwave energy was applied to break down the methane, which contains carbon. The catalyst particles prompted the nanotubes to assemble from carbon originating in the methane, and the tubes then grew vertically from the surface of the silicon chip.

"The dendrimer is a vehicle to deliver the cargo of catalyst particles, making it possible for us to seed the carbon nanotube growth right on the substrate," Amama said. "We are able to control the particle size - what ultimately determines the diameters of the tubes - and we also have control over the density, or the thickness of this forest of nanotubes. The density, quality and diameter are key parameters in controlling the heat-transfer properties."

The catalyst particles are made of "transition metals," such as iron, cobalt, nickel or palladium. Because the catalyst particles are about 10 nanometers in diameter, they allow the formation of tubes of similar diameter.

The branching dendrites are tipped with molecules called amines, which act as handles to stick to the silicon surface.

"This is important because for heat-transfer applications, you want the nanotubes to be well-anchored," Amama said.

Researchers usually produce carbon nanotubes separately and then attach them to the silicon chips or mix them with a polymer and then apply them as a paste.

"Our direct growth approach, however, addresses the critical heat-flow path, which is between the chip surface and the nanotubes themselves," Fisher said. "Without this direct connection, the thermal performance suffers greatly."

Because the dendrimers have a uniform composition and structure, the researchers were able to control the distribution and density of catalyst particles.

The research team also has been able to control the number of "defect sites" in the lattice of carbon atoms making up the tubes, creating tubes that are more flexible. This increased flexibility causes the nanotube forests to conform to the surface of the heat sink, making for better contact and improved heat conduction.

"The tubes bend like toothbrush bristles, and they stick into the gaps and make a lot of real contact," Cola said.

The carbon nanotubes were grown using a technique called microwave plasma chemical vapor deposition, a relatively inexpensive method for manufacturing a thermal-interface material made of carbon nanotubes, Fisher said.

"The plasma deposition approach allows us great flexibility in controlling the growth environment and has enabled us to grow carbon nanotube arrays over a broad range of substrate temperatures," Fisher said.

The research has been funded by NASA through the Institute for Nanoelectronics and Computing, based at Purdue's Discovery Park. Cola also received support through a fellowship from Intel Corp. and Purdue.

Purdue University

Related Carbon Nanotubes Current Events and Carbon Nanotubes News Articles

Stanford team combines logic, memory to build a 'high-rise' chip
At a conference in San Francisco, a Stanford team will reveal how to build high-rise chips that could leapfrog the performance of the single-story logic and memory chips on today's circuit cards.

'Trojan horse' proteins used to target hard-to-reach cancers
Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degener

Detecting gases wirelessly and cheaply
MIT chemists have devised a new way to wirelessly detect hazardous gases and environmental pollutants, using a simple sensor that can be read by a smartphone.

Buckyballs enhance carbon capture
Rice University scientists have discovered an environmentally friendly carbon-capture method that could be equally adept at drawing carbon dioxide emissions from industrial flue gases and natural gas wells.

Nanotubes May Restore Sight to Blind Retinas
The aging process affects everything from cardiovascular function to memory to sexuality. Most worrisome for many, however, is the potential loss of eyesight due to retinal degeneration.

UO-industry collaboration points to improved nanomaterials
A potential path to identify imperfections and improve the quality of nanomaterials for use in next-generation solar cells has emerged from a collaboration of University of Oregon and industry researchers.

Graphene/nanotube hybrid benefits flexible solar cells
Rice University scientists have invented a novel cathode that may make cheap, flexible dye-sensitized solar cells practical.

Artificial retina could someday help restore vision
The loss of eyesight, often caused by retinal degeneration, is a life-altering health issue for many people, especially as they age.

Nanotubes could serve as 'universal scaffolding' for cell membrane channels
A study, in which the Membrane Nanomechanics group led by the Ikerbasque lecturer Dr Vadim Frolov at the Biophysics Unit of the UPV/EHU-University of the Basque Country has participated, suggests that single-wall carbon nanotubes could be used as universal scaffolding to help to replicate the properties of cell membrane channels.

Better bomb-sniffing technology
University of Utah engineers have developed a new type of carbon nanotube material for handheld sensors that will be quicker and better at sniffing out explosives, deadly gases and illegal drugs.
More Carbon Nanotubes Current Events and Carbon Nanotubes News Articles

Carbon Nanotube Science: Synthesis, Properties and Applications

Carbon Nanotube Science: Synthesis, Properties and Applications
by Peter J. F. Harris (Author)

Carbon nanotubes represent one of the most exciting research areas in modern science. These molecular-scale carbon tubes are the stiffest and strongest fibres known, with remarkable electronic properties, and potential applications in a wide range of fields. Carbon Nanotube Science is the most concise, accessible book for the field, presenting the basic knowledge that graduates and researchers need to know. Based on the successful Carbon Nanotubes and Related Structures, this new book focuses solely on carbon nanotubes, covering the major advances made in recent years in this rapidly developing field. Chapters focus on electronic properties, chemical and bimolecular functionalisation, nanotube composites and nanotube-based probes and sensors. The book begins with a comprehensive...

Carbon Nanotube and Graphene Device Physics

Carbon Nanotube and Graphene Device Physics
by H.-S. Philip Wong (Author), Deji Akinwande (Author)

Explaining the properties and performance of practical nanotube devices and related applications, this is the first introductory textbook on the subject. All the fundamental concepts are introduced, so that readers without an advanced scientific background can follow all the major ideas and results. Additional topics covered include nanotube transistors and interconnects, and the basic physics of graphene. Problem sets at the end of every chapter allow readers to test their knowledge of the material covered and gain a greater understanding of the analytical skill sets developed in the text. This is an ideal textbook for senior undergraduate and graduate students taking courses in semiconductor device physics and nanoelectronics. It is also a perfect self-study guide for professional...

Carbon Nanotubes and Graphene, Second Edition

Carbon Nanotubes and Graphene, Second Edition
by Kazuyoshi Tanaka (Editor), S. Iijima (Editor)

Carbon Nanotubes and Graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much expanded second edition reference supports knowledge discovery, production of impactful carbon research, encourages transition between research fields, and aids the formation of emergent applications. New chapters encompass recent developments in the theoretical treatments of electronic and vibrational structures, and magnetic, optical, and electrical solid-state properties, providing a vital base to research....

Physical Properties of Carbon Nanotubes

Physical Properties of Carbon Nanotubes
by Riichiro Saito (Author), R. Saito (Editor), M. S. Dresselhaus (Editor)

This text is intended for researchers who want to perform theoretical analysis of carbon nanotubes. It can be used by graduate students in a solid state physics to learn how to investigate the structure of carbon nanotubes, its electronic and vibrational properties.

Physics of Carbon Nanotube Devices (Micro and Nano Technologies)

Physics of Carbon Nanotube Devices (Micro and Nano Technologies)
by Lahcen C Planting (Author)

Nanotechnology ("nanotech") is the manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of...

Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
by Michio Kaku (Author)

Space elevators. Internet-enabled contact lenses. Cars that fly by floating on magnetic fields. This is the stuff of science fiction—it’s also daily life in the year 2100.

Renowned theoretical physicist Michio Kaku details the developments in computer technology, artificial intelligence, medicine, space travel, and more, that are poised to happen over the next hundred years. He also considers how these inventions will affect the world economy, addressing the key questions: Who will have jobs? Which nations will prosper? Kaku interviews three hundred of the world’s top scientists—working in their labs on astonishing prototypes. He also takes into account the rigorous scientific principles that regulate how quickly, how safely, and how far technologies can advance. In Physics...

Carbon Nanotube and Related Field Emitters: Fundamentals and Applications

Carbon Nanotube and Related Field Emitters: Fundamentals and Applications
by Yahachi Saito (Editor)

Carbon nanotubes (CNTs) have novel properties that make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of materials science. These characteristics include extraordinary strength, unique electrical properties, and the fact that they are efficient heat conductors. Field emission is the emission of electrons from the surface of a condensed phase into another phase due to the presence of high electric fields. CNT field emitters are expected to make a breakthrough in the development of field emission display technology and enable miniature X-ray sources that will find a wide variety of applications in electronic devices, industry, and medical and security examinations.
This first monograph on the topic covers all aspects in a concise yet...

Carbon Nanotubes: Properties and Applications

Carbon Nanotubes: Properties and Applications
by CRC Press

Since their discovery more than a decade ago, carbon nanotubes (CNTs) have held scientists and engineers in captive fascination, seated on the verge of enormous breakthroughs in areas such as medicine, electronics, and materials science, to name but a few. Taking a broad look at CNTs and the tools used to study them, Carbon Nanotubes: Properties and Applications comprises the efforts of leading nanotube researchers led by Michael O’Connell, protégé of the late father of nanotechnology, Richard Smalley. Each chapter is a self-contained treatise on various aspects of CNT synthesis, characterization, modification, and applications. The book opens with a general introduction to the basic characteristics and the history of CNTs, followed by discussions on synthesis methods and the growth...

Carbon Nanotubes: Synthesis, Structure, Properties and Applications

Carbon Nanotubes: Synthesis, Structure, Properties and Applications
by Mildred S. Dresselhaus (Editor), Gene Dresselhaus (Editor), Phaedon Avouris (Editor), R.E. Smalley (Editor)

After a short introduction and a brief review of the relation between carbon nanotubes, graphite and other forms of carbon, the synthesis techniques and growth mechanisms for carbon nanotubes are described. This is followed by reviews on nanotube electronic structure, electrical, optical, and mechanical properties, nanotube imaging and spectroscopy, and nanotube applications.

Carbon Nanotubes and Graphene for Photonic Applications (Woodhead Publishing Series in Electronic and Optical Materials)

Carbon Nanotubes and Graphene for Photonic Applications (Woodhead Publishing Series in Electronic and Optical Materials)
by S. Yamashita (Editor), Y. Saito (Editor), J H Choi (Editor)

The optical properties of carbon nanotubes and graphene make them potentially suitable for a variety of photonic applications. Carbon nanotubes and graphene for photonic applications explores the properties of these exciting materials and their use across a variety of applications.

Part one introduces the fundamental optical properties of carbon nanotubes and graphene before exploring how carbon nanotubes and graphene are synthesised. A further chapter focusses on nonlinearity enhancement and novel preparation approaches for carbon nanotube and graphene photonic devices. Chapters in part two discuss carbon nanotubes and graphene for laser applications and highlight optical gain and lasing in carbon nanotubes, carbon nanotube and graphene-based fiber lasers, carbon-nanotube-based...

© 2014