Science Current Events | Science News | Brightsurf.com
 

Nanotube forests grown on silicon chips for future computers, electronics

October 02, 2007

Engineers have shown how to grow forests of tiny cylinders called carbon nanotubes onto the surfaces of computer chips to enhance the flow of heat at a critical point where the chips connect to cooling devices called heat sinks.

The carpetlike growth of nanotubes has been shown to outperform conventional "thermal interface materials." Like those materials, the nanotube layer does not require elaborate clean-room environments, representing a possible low-cost manufacturing approach to keep future chips from overheating and reduce the size of cooling systems, said Placidus B. Amama, a postdoctoral research associate at the Birck Nanotechnology Center in Purdue's Discovery Park.

Researchers are trying to develop new types of thermal interface materials that conduct heat more efficiently than conventional materials, improving overall performance and helping to meet cooling needs of future chips that will produce more heat than current microprocessors. The materials, which are sandwiched between silicon chips and the metal heat sinks, fill gaps and irregularities between the chip and metal surfaces to enhance heat flow between the two.

The method developed by the Purdue researchers enables them to create a nanotube interface that conforms to a heat sink's uneven surface, conducting heat with less resistance than comparable interface materials currently in use by industry, said doctoral student Baratunde A. Cola.

Findings were detailed in a research paper that appeared in September's issue of the journal Nanotechnology. The paper was written by Amama; Cola; Timothy D. Sands, director of the Birck Nanotechnology Center and the Basil S. Turner Professor of Materials Engineering and Electrical and Computer Engineering; and Xianfan Xu and Timothy S. Fisher, both professors of mechanical engineering.

Better thermal interface materials are needed either to test computer chips in manufacturing or to keep chips cooler during operation in commercial products.

"In a personal computer, laptop and portable electronics, the better your thermal interface material, the smaller the heat sink and overall chip-cooling systems have to be," Cola said.

Heat sinks are structures that usually contain an array of fins to increase surface contact with the air and improve heat dissipation, and a fan often also is used to blow air over the devices to cool chips.

Conventional thermal interface materials include greases, waxes and a foil made of a metal called indium. All of these materials, however, have drawbacks. The greases don't last many cycles of repeatedly testing chips on the assembly line. The indium foil doesn't make good enough contact for optimum heat transfer, Fisher said.

The Purdue researchers created templates from branching molecules called dendrimers, forming these templates on a silicon surface. Then, metal catalyst particles that are needed to grow the nanotubes were deposited inside cavities between the dendrimer branches. Heat was then applied to the silicon chip, burning away the polymer and leaving behind only the metal catalyst particles.

The engineers then placed the catalyst particle-laden silicon inside a chamber and exposed it to methane gas. Microwave energy was applied to break down the methane, which contains carbon. The catalyst particles prompted the nanotubes to assemble from carbon originating in the methane, and the tubes then grew vertically from the surface of the silicon chip.

"The dendrimer is a vehicle to deliver the cargo of catalyst particles, making it possible for us to seed the carbon nanotube growth right on the substrate," Amama said. "We are able to control the particle size - what ultimately determines the diameters of the tubes - and we also have control over the density, or the thickness of this forest of nanotubes. The density, quality and diameter are key parameters in controlling the heat-transfer properties."

The catalyst particles are made of "transition metals," such as iron, cobalt, nickel or palladium. Because the catalyst particles are about 10 nanometers in diameter, they allow the formation of tubes of similar diameter.

The branching dendrites are tipped with molecules called amines, which act as handles to stick to the silicon surface.

"This is important because for heat-transfer applications, you want the nanotubes to be well-anchored," Amama said.

Researchers usually produce carbon nanotubes separately and then attach them to the silicon chips or mix them with a polymer and then apply them as a paste.

"Our direct growth approach, however, addresses the critical heat-flow path, which is between the chip surface and the nanotubes themselves," Fisher said. "Without this direct connection, the thermal performance suffers greatly."

Because the dendrimers have a uniform composition and structure, the researchers were able to control the distribution and density of catalyst particles.

The research team also has been able to control the number of "defect sites" in the lattice of carbon atoms making up the tubes, creating tubes that are more flexible. This increased flexibility causes the nanotube forests to conform to the surface of the heat sink, making for better contact and improved heat conduction.

"The tubes bend like toothbrush bristles, and they stick into the gaps and make a lot of real contact," Cola said.

The carbon nanotubes were grown using a technique called microwave plasma chemical vapor deposition, a relatively inexpensive method for manufacturing a thermal-interface material made of carbon nanotubes, Fisher said.

"The plasma deposition approach allows us great flexibility in controlling the growth environment and has enabled us to grow carbon nanotube arrays over a broad range of substrate temperatures," Fisher said.

The research has been funded by NASA through the Institute for Nanoelectronics and Computing, based at Purdue's Discovery Park. Cola also received support through a fellowship from Intel Corp. and Purdue.

Purdue University


Related Carbon Nanotubes Current Events and Carbon Nanotubes News Articles


Nanotubes are beacons in cancer-imaging technique
Bathing a patient in LED light may someday offer a new way to locate tumors, according to Rice University researchers.

New research shows how silver could be the key to gold-standard flexible gadgets
Research published in the journals Materials Today Communications and Scientific Reports has described how silver nanowires are proving to be the ideal material for flexible, touch-screen technologies while also exploring how the material can be manipulated to tune its performance for other applications.

Effect of the Van-der-Waals and intramolecular forces
In modern microelectronics, nanobiotechnology, nanorobots increasingly have being used both organic biomacromolecules and fragments, as nucleotides, peptides, DNA, and inorganic elements, like as metallic nanoparticles, carbon nanotubes.

Nature Photonics: Light source for quicker computer chips
Worldwide growing data volumes make conventional electronic processing reach its limits.

Unraveling truly one-dimensional carbon solids
Even in its elemental form, the high bond versatility of carbon allows for many different well-known materials, including diamond and graphite.

UTA researchers devise more efficient materials for solar fuel cells
University of Texas at Arlington chemists have developed new high-performing materials for cells that harness sunlight to split carbon dioxide and water into useable fuels like methanol and hydrogen gas.

Nano-coating makes coaxial cables lighter
Common coaxial cables could be made 50 percent lighter with a new nanotube-based outer conductor developed by Rice University scientists.

Cellulose nanogenerators could one day power implanted biomedical devices
Implantable electronics that can deliver drugs, monitor vital signs and perform other health-related roles are on the horizon.

New process enables easier isolation of carbon nanotubes
Manufacture of longer, thinner, and uncontaminated carbon nanotubes, and successfully isolating them, have been ongoing challenges for researchers. A newly developed method has opened up new possibilities in carbon nanotube development.

Fuel cell advance
"Planes, Trains and Automobiles" is a popular comedy from the 1980s, but there's nothing funny about the amount of energy consumed by our nation's transportation sector.
More Carbon Nanotubes Current Events and Carbon Nanotubes News Articles

Carbon Nanotube and Graphene Device Physics

Carbon Nanotube and Graphene Device Physics
by H.-S. Philip Wong (Author), Deji Akinwande (Author)


Explaining the properties and performance of practical nanotube devices and related applications, this is the first introductory textbook on the subject. All the fundamental concepts are introduced, so that readers without an advanced scientific background can follow all the major ideas and results. Additional topics covered include nanotube transistors and interconnects, and the basic physics of graphene. Problem sets at the end of every chapter allow readers to test their knowledge of the material covered and gain a greater understanding of the analytical skill sets developed in the text. This is an ideal textbook for senior undergraduate and graduate students taking courses in semiconductor device physics and nanoelectronics. It is also a perfect self-study guide for professional...

Carbon Nanotube Science: Synthesis, Properties and Applications

Carbon Nanotube Science: Synthesis, Properties and Applications
by Peter J. F. Harris (Author)


Carbon nanotubes represent one of the most exciting research areas in modern science. These molecular-scale carbon tubes are the stiffest and strongest fibres known, with remarkable electronic properties, and potential applications in a wide range of fields. Carbon Nanotube Science is the most concise, accessible book for the field, presenting the basic knowledge that graduates and researchers need to know. Based on the successful Carbon Nanotubes and Related Structures, this new book focuses solely on carbon nanotubes, covering the major advances made in recent years in this rapidly developing field. Chapters focus on electronic properties, chemical and bimolecular functionalisation, nanotube composites and nanotube-based probes and sensors. The book begins with a comprehensive...

Physical Properties of Carbon Nanotubes

Physical Properties of Carbon Nanotubes
by G Dresselhaus (Author), M S Dresselhaus (Author), Riichiro Saito (Author)


This is an introductory textbook for graduate students and researchers from various fields of science who wish to learn about carbon nanotubes. The field is still at an early stage, and progress continues at a rapid rate. This book focuses on the basic principles behind the physical properties and gives the background necessary to understand the recent developments. Some useful computational source codes which generate coordinates for carbon nanotubes are also included in the appendix.

Industrial Applications of Carbon Nanotubes (Micro and Nano Technologies)

Industrial Applications of Carbon Nanotubes (Micro and Nano Technologies)
by Huisheng Peng (Editor), Qingwen Li (Editor), Tao Chen (Editor)


Industrial Applications of Carbon Nanotubes covers the current applications of carbon nanotubes in various industry sectors, from the military to visual display products, and energy harvesting and storage. It also assesses the opportunities and challenges for increased commercialization and manufacturing of carbon nanotubes in the years ahead. Real-life case studies illustrate how carbon nanotubes are used in each industry sector covered, providing a valuable resource for scientists and engineers who are involved and/or interested in carbon nanotubes in both academia and industry. The book serves as a comprehensive guide to the varied uses of carbon nanotubes for specialists in many related fields, including chemistry, physics, biology, and textiles. Explains how carbon nanotubes can be...

Physical and Chemical Properties of Carbon Nanotubes

Physical and Chemical Properties of Carbon Nanotubes
by Lindy Bowman (Editor)


This book presents a detailed account on the various physical and chemical properties of carbon nanotubes. These are tube like quasi-one-dimensional structures of nanometer-scale diameter made up of rolled graphene sheets. Over the past two decades, carbon nanotubes have drawn noteworthy attention of chemists, electronic device engineers, material scientists and physicists due to their outstanding electronic, chemical, optical, structural and mechanical properties. Carbon nanotube researches, particularly the ones focusing on industrial applications, are fast becoming more significant. The latest research topics on the structural, electric, physical and chemical properties on carbon nanotubes have been encompassed in this all-inclusive book. Reputed researchers from across the globe have...

Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Topics in Applied Physics)

Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Topics in Applied Physics)
by Ado Jorio (Editor), Gene Dresselhaus (Editor), Mildred S. Dresselhaus (Editor)


Building on the success of its predecessor, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, this second volume focuses on those areas that have grown rapidly in the past few years. Contributing authors reflect the multidisciplinary nature of the book and are all leaders in their particular areas of research. Among the many topics they cover are graphene and other carbon-like and tube-like materials, which are likely to affect and influence developments in nanotubes within the next five years. Extensive use of illustrations enables you to better understand and visualize key concepts and processes.

Carbon Nanotube and Nanocomposite Research (Materials Science and Technologies)

Carbon Nanotube and Nanocomposite Research (Materials Science and Technologies)
by Erne Mahler (Other Contributor)


In a supercapacitor, the surface area of the electrodes accessible to the solvated electrolyte ions determines the capacitance; therefore, carbon materials with improved surface area may increase the energy density of supercapacitors. This book examines research in carbon nanotube and nanocomposite applications.

Carbon Nanotubes and Graphene for Photonic Applications (Woodhead Publishing Series in Electronic and Optical Materials)

Carbon Nanotubes and Graphene for Photonic Applications (Woodhead Publishing Series in Electronic and Optical Materials)
by Shinji Yamashita (Editor), Yahachi Saito (Editor), Jong Hyun Choi (Editor)


The optical properties of carbon nanotubes and graphene make them potentially suitable for a variety of photonic applications. Carbon nanotubes and graphene for photonic applications explores the properties of these exciting materials and their use across a variety of applications.

Part one introduces the fundamental optical properties of carbon nanotubes and graphene before exploring how carbon nanotubes and graphene are synthesised. A further chapter focusses on nonlinearity enhancement and novel preparation approaches for carbon nanotube and graphene photonic devices. Chapters in part two discuss carbon nanotubes and graphene for laser applications and highlight optical gain and lasing in carbon nanotubes, carbon nanotube and graphene-based fiber lasers, carbon-nanotube-based...

Carbon Nanotubes, Biosensors & Energy harvesting

Carbon Nanotubes, Biosensors & Energy harvesting


Carbon nanotubes, nano-biosensors, energy harvesting and ultra low power wireless communication - all these keywords are challenges of modern technology. One can use the term "from micro to nano bioengineering" This offers the breakthrough in wearable and implantable electronic devices... devices implantable into the living organisms... even human body as well.
The invention of such devices is still emerging activity. You, the reader can puzzle above into your own vision. The book brings the knowledge about building bricks offered nowadays.
This is collection of review papers prepared by young passionates of the subject. The textbook starts with presentation of carbon nanotube field effect transistors (CNFETs) and nanowires applied as biosensors. Then we go to a little larger...

Carbon Nanotubes and Graphene, Second Edition

Carbon Nanotubes and Graphene, Second Edition
by Kazuyoshi Tanaka (Editor), S. Iijima (Editor)


Carbon Nanotubes and Graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much expanded second edition reference supports knowledge discovery, production of impactful carbon research, encourages transition between research fields, and aids the formation of emergent applications. New chapters encompass recent developments in the theoretical treatments of electronic and vibrational structures, and magnetic, optical, and electrical solid-state properties, providing a vital base to research....

© 2017 BrightSurf.com