Science Current Events | Science News | Brightsurf.com
 

UF researchers test stem cell therapy for heart patients

October 05, 2007
GAINESVILLE, Fla. - University of Florida doctors on Wednesday (Oct. 3) treated their first patient enrolled in a new study designed to test whether injecting stem cells into the heart helps restore blood flow to the organ by prompting new blood vessels to grow.

UF researchers plan to test the experimental therapy in people with severe coronary artery disease and daily chest pain who have not responded to traditional medications or surgical procedures designed to restore blood flow, such as angioplasty or bypass surgery.

"The general idea is that by providing these cells of blood vessel origin, we hope to either generate new blood vessels from the growth of these implanted cells or stimulate the heart to regenerate new blood vessels from the cells that reside in it," said study investigator Carl J. Pepine, M.D., chief of cardiovascular medicine at UF's College of Medicine. "It's not completely clear whether it's the actual cell itself that would do this or whether it's just the milieu and the chemical signals that occur from the cells that would result in this."

Each year, nearly half a million Americans with heart disease experience severe chest pain because coronary arteries and the smaller vessels that supply oxygen-rich blood to the heart muscle become narrowed or blocked by plaque deposits or clots. These blockages can trigger mini-heart attacks that, while too small to be noticed as they occur, over time irreversibly damage the heart - leading to disability, progressive heart failure or even death.

In the prospective, double-blind, placebo-controlled study, known as the Autologous Cellular Therapy CD34-Chronic Myocardial Ischemia Trial, or ACT34-CMI, UF researchers will study 15 Shands at UF medical center patients to determine whether a person's own stem cells can be used to effectively and safely treat chronic reductions in blood flow to the heart, improving symptoms and long-term outcomes. They also will evaluate whether participants report improved quality of life and exercise tolerance, and whether the heart functions better.

Participants will undergo screening tests and then receive a series of injections of a protein that releases stem cells from the bone marrow into the bloodstream. The cells, known as CD34+ stem cells, help spur blood vessel growth and are harvested from the patient during a procedure called apheresis, said Chris Cogle, an assistant professor of medicine at the UF's College of Medicine Program in Stem Cell Biology and Regenerative Medicine.

Participants will then be randomly assigned to receive one of two dosing levels of the cells, or a placebo.

"Physicians will use a catheter-based electrical mapping system to find muscle they think is still viable but not functioning," said R. David Anderson, an associate professor of medicine at UF and director of interventional cardiology. "The cells are injected into viable sites in the heart, which have poor blood flow, in the cardiac catheterization laboratory at Shands at UF medical center."

Patients will be periodically evaluated by echocardiography and magnetic resonance imaging over the course of a year after the procedure. Although to date study subjects have tolerated this procedure well, potential risks include infection, allergic reactions, bleeding, blood clots and damage to the heart or its vessels.

UF is one of 20 research sites participating in the national study, which is evaluating a total of 150 patients and is sponsored by the Cellular Therapies business unit of Baxter Healthcare Corp. and led by principal investigator Douglas Losordo, M.D., of Northwestern University's Feinberg School of Medicine. Baxter makes the cell-sorting equipment used to isolate the cells from the blood.

Pending Food and Drug Administration approval, UF researchers, through the National Heart, Lung and Blood Institute-funded Cardiovascular Cell Therapy Research Network, are gearing up to launch three other multicenter studies within the next several months that use other types of a patient's own stem cells.

One trial focuses on patients who have had a heart attack within a week preceding study enrollment, another focuses on patients whose heart attack occurred within the preceding two to three weeks, and the third focuses on patients with congestive heart failure or chronic chest pain that has not responded to traditional treatment.

These studies will use stem cells taken directly from the patients' bone marrow instead of stem cells isolated from the bloodstream, Pepine said, and will test whether various cell therapies can improve the heart's plumbing by helping to repair blood vessels or form new ones and strengthen the heart muscle to improve its ability to pump efficiently.

Douglas E. Vaughan, M.D., chief of the division of cardiovascular medicine at Vanderbilt University Medical Center, said the study is important and targets a challenging group of patients who need new options.

"There's a lot of enthusiasm in the cardiovascular community about the potential of cell-based therapies for the treatment of cardiovascular diseases," Vaughan said, "and there is increasing experience around the world in using bone marrow-derived stem cells in patients with cardiovascular disease. There is growing confidence this is going to be a safe form of therapy, but there are continuing questions about how effective it will be and what its impact will be in individual patients."

University of Florida


Related Stem Cells Current Events and Stem Cells News Articles


Blood to feeling: McMaster scientists turn blood into neural cells
Scientists at McMaster University have discovered how to make adult sensory neurons from human patients simply by having them roll up their sleeve and providing a blood sample.

Human stem cell model reveals molecular cues critical to neurovascular unit formation
Crucial bodily functions we depend on but don't consciously think about -- things like heart rate, blood flow, breathing and digestion -- are regulated by the neurovascular unit.

New techniques for reprogramming stem cells target neurological disease models
As scientists overcome the technical challenges in reprogramming stem cells to produce biologically precise models of human neurons, these emerging model systems will accelerate research on understanding neuronal activity, brain development, and neurological diseases, and will drive the discovery of new patient-specific, reprogramming-based therapies.

Printing 3-D graphene structures for tissue engineering
Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless.

Lung cell phenotype reverts when seeded onto decellularized lung matrix
Researchers seeded type II lung epithelial cells into a decellularized lung matrix to study their function and report the unexpected finding that instead of differentiating into type I lung cells, they instead transitioned to become mesenchymal cells, as would occur in wound healing.

Researchers make progress engineering digestive system tissues
New proof-of-concept research at Wake Forest Institute for Regenerative Medicine suggests the potential for engineering replacement intestine tissue in the lab, a treatment that could be applied to infants born with a short bowel and adults having large pieces of gut removed due to cancer or inflammatory bowel disease.

Research community comes together to provide new 'gold standard' for genomic data analysis
Cancer research leaders at the Ontario Institute for Cancer Research, Oregon Health & Science University, Sage Bionetworks, the distributed DREAM (Dialog for Reverse Engineering Assessment and Methods) community and The University of California Santa Cruz published the first findings of the ICGC-TCGA-DREAM Somatic Mutation Calling (SMC) Challenge (The Challenge: https://www.synapse.org/#!Synapse:syn312572) today in the journal Nature Methods.

Signaling pathway revealed through which a promising anti-leukemia drug kills cancer cells
Inhibiting a protein called BRD4 critical to the survival of acute myeloid leukemia (AML) cells has shown to be an effective therapeutic strategy.

Epilepsy has been found to reduce the generation of new neurons
The mission of neural stem cells located in the hippocampus, one of the main regions of the brain, is to generate new neurons during the adult life of mammals, including human beings, of course, and their function is to participate in certain types of learning and responses to anxiety and stress.

New age of genome editing could lead to cure for sickle cell anemia
UNSW Australia researchers have shown that changing just a single letter of the DNA of human red blood cells in the laboratory increases their production of oxygen-carrying haemoglobin - a world-first advance that could lead to a cure for sickle cell anaemia and other blood disorders.
More Stem Cells Current Events and Stem Cells News Articles

Stem Cells: An Insider's Guide

Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)


Stem Cells: An Insider's Guide is an exciting new book that takes readers inside the world of stem cells guided by international stem cell expert, Dr. Paul Knoepfler. Stem cells are catalyzing a revolution in medicine. The book also tackles the exciting and hotly debated area of stem cell treatments that are capturing the public's imagination. In the future they may also transform how we age and reproduce. However, there are serious risks and ethical challenges, too. The author's goal with this insider's guide is to give readers the information needed to distinguish between the ubiquitous hype and legitimate hope found throughout the stem cell world. The book answers the most common questions that people have about stem cells. Can stem cells help my family with a serious medical problem...

Stem Cells: A Very Short Introduction

Stem Cells: A Very Short Introduction
by Jonathan Slack (Author)


Embryonic stem cells have been hot-button topics in recent years, generating intense public interest as well as much confusion and misinformation. In this Very Short Introduction, leading authority Jonathan Slack offers a clear and informative overview of stem cells--what they are, what scientists do with them, what stem cell therapies are available today, and how they might be used in the future. Slack explains the difference between embryonic stem cells, which exist only in laboratory cultures, and tissue-specific stem cells, which exist in our bodies, and he discusses how embryonic stem cells may be used in the future to treat such illnesses as diabetes, Parkinson's disease, heart disease, spinal trauma, and retinal degeneration. But he stresses that, despite important advances, the...

Stem Cells, Tissue Engineering and Regenerative Medicine

Stem Cells, Tissue Engineering and Regenerative Medicine
by David Warburton (Author), David Warburton (Editor)


Stem cells, tissue engineering and regenerative medicine are fast moving fields with vastly transformative implications for the future of health care and capital markets. This book will show the state of the art in the translational fields of stem cell biology, tissue engineering and regenerative medicine. The state of developments in specific organ systems, where novel solutions to organ failure are badly needed such as the lungs, kidney and so forth, are discussed in various chapters. These present and future advances are placed in the context of the overall field, offering a comprehensive and quick up-to-date drink from the fountain of knowledge in this rapidly emerging field. This book provides an investigator-level overview of the current field accessible to the educated scientific...

The Stem Cell Hope: How Stem Cell Medicine Can Change Our Lives

The Stem Cell Hope: How Stem Cell Medicine Can Change Our Lives
by Alice Park (Author)


A landmark book by the senior science writer at Time magazine introduces us to a medical breakthrough that can save our lives. 

Few people know much about stem cell research beyond the ethical questions raised by using embryos. But in the last decade, stem cell research has made huge advances toward eliminating some of our most intractable diseases. Now this sweeping and accessible book introduces us to this cutting-edge science that will revolutionize medicine and change the way we think about and treat disease. 

Alice Park takes us from stem cell's controversial beginnings to the recent electrifying promise of being able to create the versatile cells without using embryos at all. She shows us how stem cells give researchers an unprecedented ability to study disease...

Stem Cells For Dummies

Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)


The first authoritative yet accessible guide to this controversial topic Stem Cell Research For Dummies offers a balanced, plain-English look at this politically charged topic, cutting away the hype and presenting the facts clearly for you, free from debate. It explains what stem cells are and what they do, the legalities of harvesting them and using them in research, the latest research findings from the U.S. and abroad, and the prospects for medical stem cell therapies in the short and long term. Explains the differences between adult stem cells and embryonic/umbilical cord stem cells Provides both sides of the political debate and the pros and cons of each side's opinions Includes medical success stories using stem cell therapy and its promise for the future Comprehensive and...

Essentials of Stem Cell Biology, Third Edition

Essentials of Stem Cell Biology, Third Edition
by Robert Lanza (Editor), Anthony Atala (Editor)


First developed as an accessible abridgement of the successful Handbook of Stem Cells, Essentials of Stem Cell Biology serves the needs of the evolving population of scientists, researchers, practitioners, and students embracing the latest advances in stem cells. Representing the combined effort of 7 editors and more than 200 scholars and scientists whose pioneering work has defined our understanding of stem cells, this book combines the prerequisites for a general understanding of adult and embryonic stem cells with a presentation by the world's experts of the latest research information about specific organ systems. From basic biology/mechanisms, early development, ectoderm, mesoderm, endoderm, and methods to the application of stem cells to specific human diseases, regulation and...

Cracking the Stem Cell Code: Adult Stem Cells Hold the Promise of Miraculous Wellness

Cracking the Stem Cell Code: Adult Stem Cells Hold the Promise of Miraculous Wellness
by Christian Drapeau (Author)


Cracking the Stem Cell Code demystifies the most important scientific breakthrough of our times. It reveals the far reaching potential of Adult Stem Cells in human health and wellness and looks at what’s new, what’s real and what’s next in stem cell science.

The Amazing Power of STEM CELL NUTRITION: How to Enhance Your Natural Repair System Today

The Amazing Power of STEM CELL NUTRITION: How to Enhance Your Natural Repair System Today
by MD, Dr. Allan C. Somersall PhD (Author)


Everybody has stem cells; everybody uses stem cells; everybody uses stem cells every day; stem cells work… and they work every time! This is a good story to tell in our generation. It’s a story in two parts. First, there is the Natural Renewal System of the body which involves the release of those stem cells from the bone marrow. They then traffic to tissues in need where they migrate out, then proliferate and differentiate to become cells of each particular tissue, thereby providing an effective means for renewal and repair. "That's what nature does already - it is now proven basic Stem Cell physiology." Second, dietary intervention through Stem Cell Nutrition is now available to enhance this intrinsic process in a mild but significant way, thereby making the promotion of...

Stem Cells, Second Edition: Scientific Facts and Fiction

Stem Cells, Second Edition: Scientific Facts and Fiction
by Christine Mummery (Author), Anja van de Stolpe (Author), Bernard Roelen (Author), Hans Clevers (Author)


The second edition of Stem Cells: Scientific Facts and Fiction provides the non-stem cell expert with an understandable review of the history, current state of affairs, and facts and fiction of the promises of stem cells. Building on success of its award-winning preceding edition, the second edition features new chapters on embryonic and iPS cells and stem cells in veterinary science and medicine. It contains major revisions on cancer stem cells to include new culture models, additional interviews with leaders in progenitor cells, engineered eye tissue, and xeno organs from stem cells, as well as new information on "organs on chips" and adult progenitor cells. In the past decades our understanding of stem cell biology has increased tremendously. Many types of stem cells have been...

The Ethics of Embryonic Stem Cell Research (Issues in Biomedical Ethics)

The Ethics of Embryonic Stem Cell Research (Issues in Biomedical Ethics)
by Katrien Devolder (Author)


Embryonic stem cell research holds unique promise for developing therapies for currently incurable diseases and conditions, and for important biomedical research. However, the process through which embryonic stem cells are obtained involves the destruction of early human embryos. Katrien Devolder focuses on the tension between the popular view that an embryo should never be deliberately harmed or destroyed, and the view that embryonic stem cell research, because of its enormous promise, must go forward. She provides an in-depth ethical analysis of the major philosophical and political attempts to resolve this tension. One such attempt involves the development of a middle ground position, which accepts only types or aspects of embryonic stem cell research deemed compatible with the view...

© 2015 BrightSurf.com