Science Current Events | Science News | Brightsurf.com
 

Developing a modular, nanoparticle drug delivery system

October 08, 2007
There are two aspects to creating an effective drug: finding a chemical compound that has the desired biological effect and minimal side-effects and then delivering it to the right place in the body for it to do its job.

With the support from a $478,000, five-year CAREER award from the National Science Foundation, Eva Harth is tackling the second part of this problem. She is creating a modular, multi-functional drug delivery system that promises simultaneously to enhance the effectiveness and reduce undesirable side-effects of a number of different drugs.

(NSF's Faculty Early Career Development awards are the agency's most prestigious honor for junior faculty members and are given to individuals judged most likely to become the academic leaders of the 21st century.)

Harth, who is an assistant professor of chemistry at Vanderbilt University, has created a "nanosponge" specially designed to carry large numbers of drug molecules. She has also discovered a "molecular transporter" that, when attached to the nanosponge, carries it and its cargo across biological barriers into specific intracellular compartments, which are very difficult places for most drugs to reach. She has shown that her system can reach another difficult target: the brain. Experiments have shown that it can pass through the brain-blood barrier. In addition, she has: successfully attached a special "targeting unit" that delivers drugs to the surface of tumors in the lungs, brain and spinal cord and even developed a "light kit" for her delivery system - fluorescent tags that researchers can use to monitor where it goes.

Harth has taken a different approach from other researchers working on nanotechnology for drug development. Instead of trying to encapsulate drugs in nanoscale containers, she decided to create a nanoparticle that had a large number of surface sites where drug molecules could be attached. To do so, she adopted a method that uses extensive internal cross-linking to scrunch a long, linear molecule into a sphere about 10 nanometers in diameter, about the size of a protein. Nanoparticles like this are called nanosponges.

"We can really load this up with a large number of drug molecules," she says.

Working with Heidi Hamm, the Earl W. Sutherland Jr. Professor of Pharmacology at Vanderbilt, Harth synthesized a dendritic molecule with the ability to slip through cell membranes and reach the cell nucleus. They figured out how to attach this "transporter" to her nanoparticle and showed that the transporter can pull the nanoparticle after it into cellular compartments. They also demonstrated that the transporter can deliver large molecules - specifically peptides and proteins - into specific sub-cellular locations.

"Peptides and proteins can act as drugs, just like smaller molecules," Harth says. "However, there is not much activity in this area because people haven't had a method for getting them into cells. Now that there is a way to do it, but that may change."

Hamm studies G proteins, arguably the most important signaling molecules in the cell. Scientists think that many diseases, including diabetes and certain forms of pituitary cancer, are caused by malfunctioning G proteins. She and Harth are collaborating on using the transporter to deliver peptides produced by G proteins that disrupt signaling pathways.

"Eva's methods for drug delivery are very novel and versatile and can be adapted to delivery of proteins, peptides, DNA and smaller chemical compounds like most drugs. The breadth of applications makes her technology very powerful," Hamm says.

The chemist is also collaborating with Dennis E. Hallahan, professor of radiation oncology at Vanderbilt, to apply the drug delivery system to fighting cancer. Hallahan's lab had identified a molecule that targets a surface feature on lung carcinomas. Harth took the molecule, improved it, attached it to her nanoparticle and the two of them determined that the combination is capable of delivering drugs to the surface of lung tumors.

She is now working with Hallahan to adapt her delivery system to carry cisplatinum, a traditional chemotherapy agent that is used to treat a number of different kinds of cancer but is highly toxic and has a number of unpleasant side effects.

By delivering the anti-cancer agent directly to the cancerous tissues, Eva's system decreases the adverse effects on other tissues and increases its potency by delivering a higher concentration of the drug directly on the cancer, Hallahan explains.

"The people in my lab have tried at a number of different drug delivery systems and Eva's works the best of those we've looked at," Hallahan says.

Vanderbilt is applying for two patents on the system.

Vanderbilt University


Related Drug Delivery Current Events and Drug Delivery News Articles


Rice study fuels hope for natural gas cars
Cars that run on natural gas are touted as efficient and environmentally friendly, but getting enough gas onboard to make them practical is a hurdle. A new study led by researchers at Rice University promises to help.

UTMB study finds that most patients do not use inhalers and epinephrine autoinjectors correctly
For people with asthma or severe allergies, medical devices like inhalers and epinephrine autoinjectors, such as EpiPen, can be lifesaving.

Dartmouth researchers create 'green' process to reduce molecular switching waste
Dartmouth researchers have found a solution using visible light to reduce waste produced in chemically activated molecular switches, opening the way for industrial applications of nanotechnology ranging from anti-cancer drug delivery to LCD displays and molecular motors.

New technique allows low-cost creation of 3-D nanostructures
Researchers from North Carolina State University have developed a new lithography technique that uses nanoscale spheres to create three-dimensional (3-D) structures with biomedical, electronic and photonic applications.

MatSE researchers develop inexpensive hydrolyzable polymer
Researchers at the University of Illinois at Urbana-Champaign have figured out how to reverse the characteristics of a key bonding material-polyurea-providing an inexpensive alternative for a broad number of applications, such as drug delivery, tissue engineering, and packaging.

Trial shows new imaging system may cut X-ray exposure for liver cancer patients
Johns Hopkins researchers report that their test of an interventional X-ray guidance device approved by the U.S. Food and Drug Administration in 2013 has the potential to reduce the radiation exposure of patients undergoing intra-arterial therapy (IAT) for liver cancer.

Wireless electronic implants stop staph, then dissolve
Researchers at Tufts University, in collaboration with a team at the University of Illinois at Champaign-Urbana, have demonstrated a resorbable electronic implant that eliminated bacterial infection in mice by delivering heat to infected tissue when triggered by a remote wireless signal.

Antiangiogenic treatment improves survival in animal model of ovarian cancer
Epithelial ovarian cancer is the most lethal cancer of the female reproductive organs, with more than 200,000 new cases and more than 125,000 deaths each year worldwide.

Common cholesterol-fighting drug may prevent hysterectomies in women with uterine fibroids
Researchers at the University of Texas Medical Branch at Galveston, in collaboration with The University of Texas Health Science Center at Houston (UTHealth), Baylor College of Medicine and the Georgia Regents University, report for the first time that the cholesterol-lowering drug simvastatin inhibits the growth of human uterine fibroid tumors.

U of G Scientists Find Way to Reduce Ovarian Cancer Tumours, Chemo Doses
In a potential breakthrough against ovarian cancer, University of Guelph researchers have discovered how to both shrink tumours and improve drug delivery, allowing for lower doses of chemotherapy and reducing side effects.
More Drug Delivery Current Events and Drug Delivery News Articles

Drug Delivery: Engineering Principles for Drug Therapy (Topics in Chemical Engineering)

Drug Delivery: Engineering Principles for Drug Therapy (Topics in Chemical Engineering)
by W. Mark Saltzman (Author)


Synthetic materials are a tremendous potential resource for treating human disease. For the rational design of many of these biomaterials it is necessary to have an understanding of polymer chemistry and polymer physics. Equally important to those two fields is a quantitative understanding of the principles that govern rates of drug transport, reaction, and disappearance in physiological and pathological situations. This book is a synthesis of these principles, providing a working foundation for those in the field of drug delivery. It covers advanced drug delivery and contemporary biomaterials.

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems
by Loyd Allen (Author)


Succeed in your course with the most comprehensive source on pharmaceutical dosage forms and drug delivery systems available today. Reflecting the CAPE, APhA, and NAPLEX® competencies, this trusted resource covers physical pharmacy, pharmacy practice, pharmaceutics, compounding, and dosage forms and the clinical application of the various dosing forms in patient care. The 10th edition features a dynamic new full color design, new coverage of prescription flavoring, and additional coverage of expiration dates.   See pharmaceutical concepts in action through the two case studies (one pharmaceutical and one clinical) in each dosing forms chapter. Practice applying material using the group and individual activities in Applying the Principles and Concepts sections...

Drug Delivery

Drug Delivery
by Ashim K. Mitra (Author), Deep Kwatra (Author), Aswani Dutt Vadlapudi (Author)


Drug Delivery is the latest and most up-to-date text on drug delivery and offers an excellent working foundation for students and clinicians in health professions and graduate students including nursing, pharmacy, medicine, and dentistry, as well as researchers and scientists. Presenting complex content in an organized and concise format, this accessible text provides a detailed overview of drug delivery systems, routes of drug administration and development of various formulations. This text provides a comprehensive review of the cutting edge research being carried out in this field and a focus on the worldwide research on drug delivery and targeting at the molecular, cellular, and organ levels. KEY TOPICS CNS delivery Gene delivery Ocular delivery World-wide research on drug delivery...

Advanced Drug Delivery

Advanced Drug Delivery
by Ashim Mitra (Author), Chi H. Lee (Author), Kun Cheng (Author)


Provides both fundamentals and new and emerging applicationsAdvanced Drug Delivery brings readers fully up to date with the state of the science, presenting the basics, formulation strategies, and therapeutic applications of advanced drug delivery. The book demonstrates how core concepts of pharmaceutical sciences, chemistry, and molecular biology can be combined and applied in order to spark novel ideas to design and develop advanced drug delivery systems for the treatment of a broad range of human diseases.Advanced Drug Delivery features contributions from an international team of pharmaceutical scientists. Chapters reflect a thorough review and analysis of the literature as well as the authors' firsthand experience developing drug delivery systems. The book is divided into four...

Drug Delivery: Principles and Applications

Drug Delivery: Principles and Applications
by Binghe Wang (Author), Teruna J. Siahaan (Author), Richard A. Soltero (Author)


An indispensable tool for those working at the front lines of new drug development
Written for busy professionals at the forefront of new drug development, Drug Delivery gets readers quickly up to speed on both the principles and latest applications in the increasingly important field of drug delivery.
Recent developments in such areas as combinatorial chemistry, proteomics, and genomics have revolutionized researchers' ability to rapidly identify and synthesize new pharmacological compounds. However, delivery-related properties remain a significant reason for clinical trial failures.
Bringing together contributions by leading international experts, Drug Delivery covers the entire field in a systematic but concise way. It begins with an in-depth review of key fundamentals, such...

  Drug Delivery: Principles and Applications (Wiley Series in Drug Discovery and Development)
by Binghe Wang (Author)


Since the first edition of Drug Delivery published, there have been significant advances in the field – new materials for delivery vehicles, new approaches to deliver drugs, and new therapeutics requiring new delivery methods. As a result, a new edition to reflect these advances is both timely and necessary. The 2nd edition expands to 31 chapters, divided into 5 sections. The first focuses on general concepts, fundamental methods, and principles, the second on routes of drug administration, the third on approaches to improve drug delivery, the fourth on targeted drug delivery systems, and the fifth on the delivery of macromolecular drugs. While almost all chapters from the prior edition are retained and updated, several new chapters are added to make a more complete resource and...

Drug Delivery Systems, Third Edition (Pharmacology and Toxicology: Basic and Clinical Aspects)

Drug Delivery Systems, Third Edition (Pharmacology and Toxicology: Basic and Clinical Aspects)
by Vasant V. Ranade (Author), John B. Cannon (Author)


Drug delivery technologies represent a vast, vital area of research and development in pharmaceuticals. The demand for innovative drug delivery systems continues to grow, driving a variety of new developments. Drug Delivery Systems, Third Edition provides a comprehensive review of the latest research and development on drug delivery systems. Coverage includes liposomal, transmucosal, transdermal, oral, polymeric, and monoclonal antibody directed delivery. Each chapter provides a table of marketed and investigational products with numerous practical examples. The book also provides readers with a multitude of possible drug delivery systems that can be used to improve therapeutics, along with global and regulatory perspectives. This third edition contains a chapter on nanoscience and...

Engineering Polymer Systems for Improved Drug Delivery

Engineering Polymer Systems for Improved Drug Delivery
by Rebecca A. Bader (Author), David A. Putnam (Author)


Polymers have played a critical role in the rational design and application of drug delivery systems that increase the efficacy and reduce the toxicity of new and conventional therapeutics. Beginning with an introduction to the fundamentals of drug delivery, Engineering Polymer Systems for Improved Drug Delivery explores traditional drug delivery techniques as well as emerging advanced drug delivery techniques. By reviewing many types of polymeric drug delivery systems, and including key points, worked examples and homework problems, this book will serve as a guide to for specialists and non-specialists as well as a graduate level text for drug delivery courses.

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems
by Loyd V. Allen Jr. PhD (Editor), Nicholas G. Popovich PhD (Editor), Howard C. Ansel PhD (Editor)


Long established as a core text for pharmaceutics courses, this book is the most comprehensive source on pharmaceutical dosage forms and drug delivery systems. Content coincides with the CAPE, APhA, and NAPLEX® competencies. This edition includes updated drug information and has an increased focus on physical pharmacy. Coverage incorporates all new dosage forms on the market as well as those in the current US Pharmacopoeia-National Formulary. Updated photos are included. An "Applying the Principles and Concepts" section at the end of each chapter provides activities for the application of the material. A companion website includes the fully searchable text and a quiz bank with more than 200 questions written in NAPLEX® format.

Nanomedicine in Drug Delivery

Nanomedicine in Drug Delivery
by Arun Kumar (Editor), Heidi M. Mansour (Editor), Adam Friedman (Editor), Eric R. Blough (Editor)


There is a clear need for innovative technologies to improve the delivery of therapeutic and diagnostic agents in the body. Recent breakthroughs in nanomedicine are now making it possible to deliver drugs and therapeutic proteins to local areas of disease or tumors to maximize clinical benefit while limiting unwanted side effects. Nanomedicine in Drug Delivery gives an overview of aspects of nanomedicine to help readers design and develop novel drug delivery systems and devices that build on nanoscale technologies. Featuring contributions by leading researchers from around the world, the book examines: The integration of nanoparticles with therapeutic agents The synthesis and characterization of nanoencapsulated drug particles Targeted pulmonary nanomedicine delivery using inhalation...

© 2014 BrightSurf.com