Science Current Events | Science News | Brightsurf.com
 

Developing a modular, nanoparticle drug delivery system

October 08, 2007
There are two aspects to creating an effective drug: finding a chemical compound that has the desired biological effect and minimal side-effects and then delivering it to the right place in the body for it to do its job.

With the support from a $478,000, five-year CAREER award from the National Science Foundation, Eva Harth is tackling the second part of this problem. She is creating a modular, multi-functional drug delivery system that promises simultaneously to enhance the effectiveness and reduce undesirable side-effects of a number of different drugs.

(NSF's Faculty Early Career Development awards are the agency's most prestigious honor for junior faculty members and are given to individuals judged most likely to become the academic leaders of the 21st century.)

Harth, who is an assistant professor of chemistry at Vanderbilt University, has created a "nanosponge" specially designed to carry large numbers of drug molecules. She has also discovered a "molecular transporter" that, when attached to the nanosponge, carries it and its cargo across biological barriers into specific intracellular compartments, which are very difficult places for most drugs to reach. She has shown that her system can reach another difficult target: the brain. Experiments have shown that it can pass through the brain-blood barrier. In addition, she has: successfully attached a special "targeting unit" that delivers drugs to the surface of tumors in the lungs, brain and spinal cord and even developed a "light kit" for her delivery system - fluorescent tags that researchers can use to monitor where it goes.

Harth has taken a different approach from other researchers working on nanotechnology for drug development. Instead of trying to encapsulate drugs in nanoscale containers, she decided to create a nanoparticle that had a large number of surface sites where drug molecules could be attached. To do so, she adopted a method that uses extensive internal cross-linking to scrunch a long, linear molecule into a sphere about 10 nanometers in diameter, about the size of a protein. Nanoparticles like this are called nanosponges.

"We can really load this up with a large number of drug molecules," she says.

Working with Heidi Hamm, the Earl W. Sutherland Jr. Professor of Pharmacology at Vanderbilt, Harth synthesized a dendritic molecule with the ability to slip through cell membranes and reach the cell nucleus. They figured out how to attach this "transporter" to her nanoparticle and showed that the transporter can pull the nanoparticle after it into cellular compartments. They also demonstrated that the transporter can deliver large molecules - specifically peptides and proteins - into specific sub-cellular locations.

"Peptides and proteins can act as drugs, just like smaller molecules," Harth says. "However, there is not much activity in this area because people haven't had a method for getting them into cells. Now that there is a way to do it, but that may change."

Hamm studies G proteins, arguably the most important signaling molecules in the cell. Scientists think that many diseases, including diabetes and certain forms of pituitary cancer, are caused by malfunctioning G proteins. She and Harth are collaborating on using the transporter to deliver peptides produced by G proteins that disrupt signaling pathways.

"Eva's methods for drug delivery are very novel and versatile and can be adapted to delivery of proteins, peptides, DNA and smaller chemical compounds like most drugs. The breadth of applications makes her technology very powerful," Hamm says.

The chemist is also collaborating with Dennis E. Hallahan, professor of radiation oncology at Vanderbilt, to apply the drug delivery system to fighting cancer. Hallahan's lab had identified a molecule that targets a surface feature on lung carcinomas. Harth took the molecule, improved it, attached it to her nanoparticle and the two of them determined that the combination is capable of delivering drugs to the surface of lung tumors.

She is now working with Hallahan to adapt her delivery system to carry cisplatinum, a traditional chemotherapy agent that is used to treat a number of different kinds of cancer but is highly toxic and has a number of unpleasant side effects.

By delivering the anti-cancer agent directly to the cancerous tissues, Eva's system decreases the adverse effects on other tissues and increases its potency by delivering a higher concentration of the drug directly on the cancer, Hallahan explains.

"The people in my lab have tried at a number of different drug delivery systems and Eva's works the best of those we've looked at," Hallahan says.

Vanderbilt is applying for two patents on the system.

Vanderbilt University


Related Drug Delivery Current Events and Drug Delivery News Articles


Stomach acid-powered micromotors get their first test in a living animal
Researchers at the University of California, San Diego have shown that a micromotor fueled by stomach acid can take a bubble-powered ride inside a mouse.

Gold nanoparticles show promise for early detection of heart attacks
NYU Polytechnic School of Engineering professors have been collaborating with researchers from Peking University on a new test strip that is demonstrating great potential for the early detection of certain heart attacks.

Chemical dial controls attraction between water-repelling molecules
Fear of water may seem like an irrational hindrance to humans, but on a molecular level, it lends order to the world.

Tumor micro-environment is a rough neighborhood for nanoparticle cancer drugs
Nanoparticle drugs--tiny containers packed with medicine and with the potential to be shipped straight to tumors--were thought to be a possible silver bullet against cancer. However new cancer drugs based on nanoparticles have not improved overall survival rates for cancer patients very much.

Responsive material could be the 'golden ticket' of sensing
Researchers from the University of Cambridge have developed a new self-assembled material, which, by changing its shape, can amplify small variations in temperature and concentration of biomolecules, making them easier to detect.

'Flying carpet' technique uses graphene to deliver one-two punch of anticancer drugs
An international team of researchers has developed a drug delivery technique that utilizes graphene strips as "flying carpets" to deliver two anticancer drugs sequentially to cancer cells, with each drug targeting the distinct part of the cell where it will be most effective.

Rice study fuels hope for natural gas cars
Cars that run on natural gas are touted as efficient and environmentally friendly, but getting enough gas onboard to make them practical is a hurdle. A new study led by researchers at Rice University promises to help.

UTMB study finds that most patients do not use inhalers and epinephrine autoinjectors correctly
For people with asthma or severe allergies, medical devices like inhalers and epinephrine autoinjectors, such as EpiPen, can be lifesaving.

Dartmouth researchers create 'green' process to reduce molecular switching waste
Dartmouth researchers have found a solution using visible light to reduce waste produced in chemically activated molecular switches, opening the way for industrial applications of nanotechnology ranging from anti-cancer drug delivery to LCD displays and molecular motors.

New technique allows low-cost creation of 3-D nanostructures
Researchers from North Carolina State University have developed a new lithography technique that uses nanoscale spheres to create three-dimensional (3-D) structures with biomedical, electronic and photonic applications.
More Drug Delivery Current Events and Drug Delivery News Articles

Drug Delivery: Engineering Principles for Drug Therapy (Topics in Chemical Engineering)

Drug Delivery: Engineering Principles for Drug Therapy (Topics in Chemical Engineering)
by W. Mark Saltzman (Author)


Synthetic materials are a tremendous potential resource for treating human disease. For the rational design of many of these biomaterials it is necessary to have an understanding of polymer chemistry and polymer physics. Equally important to those two fields is a quantitative understanding of the principles that govern rates of drug transport, reaction, and disappearance in physiological and pathological situations. This book is a synthesis of these principles, providing a working foundation for those in the field of drug delivery. It covers advanced drug delivery and contemporary biomaterials.

Drug Delivery

Drug Delivery
by Ashim K. Mitra (Author), Deep Kwatra (Author), Aswani Dutt Vadlapudi (Author)


Drug Delivery is the latest and most up-to-date text on drug delivery and offers an excellent working foundation for students and clinicians in health professions and graduate students including nursing, pharmacy, medicine, and dentistry, as well as researchers and scientists. Presenting complex content in an organized and concise format, this accessible text provides a detailed overview of drug delivery systems, routes of drug administration and development of various formulations. This text provides a comprehensive review of the cutting edge research being carried out in this field and a focus on the worldwide research on drug delivery and targeting at the molecular, cellular, and organ levels. KEY TOPICS CNS delivery Gene delivery Ocular delivery World-wide research on drug delivery...

Drug Delivery: Principles and Applications

Drug Delivery: Principles and Applications
by Binghe Wang (Author), Teruna J. Siahaan (Author), Richard A. Soltero (Author)


This is an indispensable tool for those working at the front lines of new drug development. Written for busy professionals at the forefront of new drug development, "Drug Delivery" gets readers quickly up to speed on both the principles and latest applications in the increasingly important field of drug delivery. Recent developments in such areas as combinatorial chemistry, proteomics, and genomics have revolutionized researchers' ability to rapidly identify and synthesize new pharmacological compounds. However, delivery-related properties remain a significant reason for clinical trial failures. Bringing together contributions by leading international experts, "Drug Delivery" covers the entire field in a systematic but concise way. It begins with an in-depth review of key fundamentals,...

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems
by Loyd Allen (Author)


Succeed in your course with the most comprehensive source on pharmaceutical dosage forms and drug delivery systems available today. Reflecting the CAPE, APhA, and NAPLEX® competencies, this trusted resource covers physical pharmacy, pharmacy practice, pharmaceutics, compounding, and dosage forms and the clinical application of the various dosing forms in patient care. The 10th edition features a dynamic new full color design, new coverage of prescription flavoring, and additional coverage of expiration dates.   See pharmaceutical concepts in action through the two case studies (one pharmaceutical and one clinical) in each dosing forms chapter. Practice applying material using the group and individual activities in Applying the Principles and Concepts sections...

Advanced Drug Delivery

Advanced Drug Delivery
by Ashim Mitra (Author), Chi H. Lee (Author), Kun Cheng (Author)


Offering a holistic view of the development of drug delivery systems, Advanced Drug Delivery presents the essential aspects necessary to understand and apply for effective drug delivery fundamentals, including practical issues, integration of pharmaceutics, and molecular biology. A suitable text for graduate and advanced undergraduate students, the book is logically divided into four sections: fundamentals, delivery approaches, disease applications, and future directions. Discussing design, in vitro studies, clinical evaluation, and regulatory approval, each chapter includes objectives and assessment questions.

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems
by Loyd V. Allen Jr. PhD (Editor), Nicholas G. Popovich PhD (Editor), Howard C. Ansel PhD (Editor)


Long established as a core text for pharmaceutics courses, this book is the most comprehensive source on pharmaceutical dosage forms and drug delivery systems. Content coincides with the CAPE, APhA, and NAPLEX® competencies. This edition includes updated drug information and has an increased focus on physical pharmacy. Coverage incorporates all new dosage forms on the market as well as those in the current US Pharmacopoeia-National Formulary. Updated photos are included. An "Applying the Principles and Concepts" section at the end of each chapter provides activities for the application of the material. A companion website includes the fully searchable text and a quiz bank with more than 200 questions written in NAPLEX® format.

Drug Delivery Systems, Third Edition (Pharmacology and Toxicology: Basic and Clinical Aspects)

Drug Delivery Systems, Third Edition (Pharmacology and Toxicology: Basic and Clinical Aspects)
by Vasant V. Ranade (Author), John B. Cannon (Author)


Drug delivery technologies represent a vast, vital area of research and development in pharmaceuticals. The demand for innovative drug delivery systems continues to grow, driving a variety of new developments. Drug Delivery Systems, Third Edition provides a comprehensive review of the latest research and development on drug delivery systems. Coverage includes liposomal, transmucosal, transdermal, oral, polymeric, and monoclonal antibody directed delivery. Each chapter provides a table of marketed and investigational products with numerous practical examples. The book also provides readers with a multitude of possible drug delivery systems that can be used to improve therapeutics, along with global and regulatory perspectives. This third edition contains a chapter on nanoscience and...

Control of Biological and Drug-Delivery Systems for Chemical, Biomedical, and Pharmaceutical Engineering

Control of Biological and Drug-Delivery Systems for Chemical, Biomedical, and Pharmaceutical Engineering
by Laurent Simon (Author)


Enables readers to apply process dynamics and control theory to solve bioprocess and drug delivery problems The control of biological and drug delivery systems is critical to the health of millions of people worldwide. As a result, researchers in systems biology and drug delivery rely on process dynamics and control theory to build our knowledge of cell behavior and to develop more effective therapeutics, controlled release devices, and drug administration protocols to manage disease. Written by a leading expert and educator in the field, this text helps readers develop a deep understanding of process dynamics and control theory in order to analyze and solve a broad range of problems in bioprocess and drug delivery systems. For example, readers will learn how stability criteria can be...

Gibaldi's Drug Delivery Systems in Pharmaceutical Care

Gibaldi's Drug Delivery Systems in Pharmaceutical Care
by Archana Desai (Editor), Mary Lee PharmD BCPS FCCP (Editor)


It is important to make therapeutics a critical component of teaching about dosage forms and to make dosage forms and drug delivery systems an integral part of therapeutics. This book will be the first to focus on the therapeutic impact of drug dosage forms.Tying together concepts of traditional pharmaceutics with therapeutics, Drug Delivery Systems in Pharmaceutical Care demonstrates how the modern clinical pharmacist can integrate knowledge in pharmaceutical sciences and therapeutics with appreciation of patient needs and nuances to advise on preferable and optimal product choices. Each chapter represents a collaboration of a clinical pharmacist practitioner and a pharmaceutical scientist. This unique perspective takes the science of dosage form design and helps translate the theory...

Engineering Polymer Systems for Improved Drug Delivery

Engineering Polymer Systems for Improved Drug Delivery
by Rebecca A. Bader (Author), David A. Putnam (Author)


Polymers have played a critical role in the rational design and application of drug delivery systems that increase the efficacy and reduce the toxicity of new and conventional therapeutics. Beginning with an introduction to the fundamentals of drug delivery, Engineering Polymer Systems for Improved Drug Delivery explores traditional drug delivery techniques as well as emerging advanced drug delivery techniques. Author Michael Bader reviews many types of polymeric drug delivery and provides a strong foundation for both specialists and non-specialists with interest in polymeric drug delivery.

© 2015 BrightSurf.com