Science Current Events | Science News | Brightsurf.com
 

Developing a modular, nanoparticle drug delivery system

October 08, 2007
There are two aspects to creating an effective drug: finding a chemical compound that has the desired biological effect and minimal side-effects and then delivering it to the right place in the body for it to do its job.

With the support from a $478,000, five-year CAREER award from the National Science Foundation, Eva Harth is tackling the second part of this problem. She is creating a modular, multi-functional drug delivery system that promises simultaneously to enhance the effectiveness and reduce undesirable side-effects of a number of different drugs.

(NSF's Faculty Early Career Development awards are the agency's most prestigious honor for junior faculty members and are given to individuals judged most likely to become the academic leaders of the 21st century.)

Harth, who is an assistant professor of chemistry at Vanderbilt University, has created a "nanosponge" specially designed to carry large numbers of drug molecules. She has also discovered a "molecular transporter" that, when attached to the nanosponge, carries it and its cargo across biological barriers into specific intracellular compartments, which are very difficult places for most drugs to reach. She has shown that her system can reach another difficult target: the brain. Experiments have shown that it can pass through the brain-blood barrier. In addition, she has: successfully attached a special "targeting unit" that delivers drugs to the surface of tumors in the lungs, brain and spinal cord and even developed a "light kit" for her delivery system - fluorescent tags that researchers can use to monitor where it goes.

Harth has taken a different approach from other researchers working on nanotechnology for drug development. Instead of trying to encapsulate drugs in nanoscale containers, she decided to create a nanoparticle that had a large number of surface sites where drug molecules could be attached. To do so, she adopted a method that uses extensive internal cross-linking to scrunch a long, linear molecule into a sphere about 10 nanometers in diameter, about the size of a protein. Nanoparticles like this are called nanosponges.

"We can really load this up with a large number of drug molecules," she says.

Working with Heidi Hamm, the Earl W. Sutherland Jr. Professor of Pharmacology at Vanderbilt, Harth synthesized a dendritic molecule with the ability to slip through cell membranes and reach the cell nucleus. They figured out how to attach this "transporter" to her nanoparticle and showed that the transporter can pull the nanoparticle after it into cellular compartments. They also demonstrated that the transporter can deliver large molecules - specifically peptides and proteins - into specific sub-cellular locations.

"Peptides and proteins can act as drugs, just like smaller molecules," Harth says. "However, there is not much activity in this area because people haven't had a method for getting them into cells. Now that there is a way to do it, but that may change."

Hamm studies G proteins, arguably the most important signaling molecules in the cell. Scientists think that many diseases, including diabetes and certain forms of pituitary cancer, are caused by malfunctioning G proteins. She and Harth are collaborating on using the transporter to deliver peptides produced by G proteins that disrupt signaling pathways.

"Eva's methods for drug delivery are very novel and versatile and can be adapted to delivery of proteins, peptides, DNA and smaller chemical compounds like most drugs. The breadth of applications makes her technology very powerful," Hamm says.

The chemist is also collaborating with Dennis E. Hallahan, professor of radiation oncology at Vanderbilt, to apply the drug delivery system to fighting cancer. Hallahan's lab had identified a molecule that targets a surface feature on lung carcinomas. Harth took the molecule, improved it, attached it to her nanoparticle and the two of them determined that the combination is capable of delivering drugs to the surface of lung tumors.

She is now working with Hallahan to adapt her delivery system to carry cisplatinum, a traditional chemotherapy agent that is used to treat a number of different kinds of cancer but is highly toxic and has a number of unpleasant side effects.

By delivering the anti-cancer agent directly to the cancerous tissues, Eva's system decreases the adverse effects on other tissues and increases its potency by delivering a higher concentration of the drug directly on the cancer, Hallahan explains.

"The people in my lab have tried at a number of different drug delivery systems and Eva's works the best of those we've looked at," Hallahan says.

Vanderbilt is applying for two patents on the system.

Vanderbilt University


Related Drug Delivery Current Events and Drug Delivery News Articles


IU research: A microRNA may provide therapy against pancreatic cancer
Indiana University cancer researchers found that a particular microRNA may be a potent therapeutic agent against pancreatic cancer. The research was published June 22 in the journal Scientific Reports.

Nanowire implants offer remote-controlled drug delivery
A team of researchers has created a new implantable drug-delivery system using nanowires that can be wirelessly controlled.

More accurate continuous glucose monitoring systems can reduce frequency of hypoglycemic episodes
In silico experiments demonstrate that advanced sensor and software technology that improves the accuracy of Continuous Glucose Monitoring (CGM) can enable better detection of dangerously low blood sugar and reduced frequency of hypoglycemic episodes.

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies
Biomedical researchers at Cedars-Sinai have invented a tiny drug-delivery system that can identify cancer cell types in the brain through "virtual biopsies" and then attack the molecular structure of the disease.

Anti-stroke drug effective treatment for middle-ear infections, researchers say
An existing anti-stroke drug is an effective treatment for middle-ear infections, showing the ability to suppress mucus overproduction, improve bacterial clearance and reduce hearing loss, according to researchers at Georgia State University and the University of Rochester.

Designing better medical implants
Biomedical devices that can be implanted in the body for drug delivery, tissue engineering, or sensing can help improve treatment for many diseases.

Georgia State research paves way for early detection of liver cancer
Led by Georgia State University, researchers have developed the first robust and noninvasive detection of early stage liver cancer and liver metastases, in addition to other liver diseases, such as cirrhosis and liver fibrosis.

Cybersecurity and the artificial pancreas -- what are the risks?
An artificial pancreas, designed for blood glucose control in diabetes, is controlled by software that runs on mobile computing platforms such as laptops, tablets, and smartphones, and operates over wireless networks under local or remote medical supervision.

A turning point in the physics of blood
Mike Graham knows that fluid dynamics can reveal much about how the flow of blood helps and hinders individual blood cells as they go about their work.

Penn researchers develop custom artificial membranes with programmable surfaces
Decorating the outside of cells like tiny antenna, a diverse community of sugar molecules acts like a telecommunications system, sending and receiving information, recognizing and responding to foreign molecules and neighboring cells.
More Drug Delivery Current Events and Drug Delivery News Articles

Drug Delivery

Drug Delivery
by Ashim K. Mitra (Author), Deep Kwatra (Author), Aswani Dutt Vadlapudi (Author)


Drug Delivery is the latest and most up-to-date text on drug delivery and offers an excellent working foundation for students and clinicians in health professions and graduate students including nursing, pharmacy, medicine, and dentistry, as well as researchers and scientists. Presenting complex content in an organized and concise format, this accessible text provides a detailed overview of drug delivery systems, routes of drug administration and development of various formulations. This text provides a comprehensive review of the cutting edge research being carried out in this field and a focus on the worldwide research on drug delivery and targeting at the molecular, cellular, and organ levels. KEY TOPICS CNS delivery Gene delivery Ocular delivery World-wide research on drug delivery...

Drug Delivery: Engineering Principles for Drug Therapy (Topics in Chemical Engineering)

Drug Delivery: Engineering Principles for Drug Therapy (Topics in Chemical Engineering)
by W. Mark Saltzman (Author)


Synthetic materials are a tremendous potential resource for treating human disease. For the rational design of many of these biomaterials it is necessary to have an understanding of polymer chemistry and polymer physics. Equally important to those two fields is a quantitative understanding of the principles that govern rates of drug transport, reaction, and disappearance in physiological and pathological situations. This book is a synthesis of these principles, providing a working foundation for those in the field of drug delivery. It covers advanced drug delivery and contemporary biomaterials.

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems
by Loyd Allen (Author)


Succeed in your course with the most comprehensive source on pharmaceutical dosage forms and drug delivery systems available today. Reflecting the CAPE, APhA, and NAPLEX® competencies, this trusted resource covers physical pharmacy, pharmacy practice, pharmaceutics, compounding, and dosage forms and the clinical application of the various dosing forms in patient care. The 10th edition features a dynamic new full color design, new coverage of prescription flavoring, and additional coverage of expiration dates.   See pharmaceutical concepts in action through the two case studies (one pharmaceutical and one clinical) in each dosing forms chapter. Practice applying material using the group and individual activities in Applying the Principles and Concepts sections...

Drug Delivery: Principles and Applications

Drug Delivery: Principles and Applications
by Binghe Wang (Author), Teruna J. Siahaan (Author), Richard A. Soltero (Author)


This is an indispensable tool for those working at the front lines of new drug development. Written for busy professionals at the forefront of new drug development, "Drug Delivery" gets readers quickly up to speed on both the principles and latest applications in the increasingly important field of drug delivery. Recent developments in such areas as combinatorial chemistry, proteomics, and genomics have revolutionized researchers' ability to rapidly identify and synthesize new pharmacological compounds. However, delivery-related properties remain a significant reason for clinical trial failures. Bringing together contributions by leading international experts, "Drug Delivery" covers the entire field in a systematic but concise way. It begins with an in-depth review of key fundamentals,...

Topical and Transdermal Drug Delivery: Principles and Practice

Topical and Transdermal Drug Delivery: Principles and Practice
by Heather A. E. Benson (Editor), Adam C. Watkinson (Editor)


By understanding the mechanisms by which compounds cross the skin, it becomes possible to devise means for improving drug delivery. Providing an overview of the current science in drug and cosmetic application to and through the skin, Topical and Transdermal Drug Delivery includes treatment of skin conditions, skin permeation, and enhancement and measurement of skin permeation. The book provides pharmaceutical scientists, skin product development experts, and those in the cosmetic and personal care industry with practical knowledge and insight into future product development.

Drug Delivery Systems, Third Edition (Pharmacology and Toxicology: Basic and Clinical Aspects)

Drug Delivery Systems, Third Edition (Pharmacology and Toxicology: Basic and Clinical Aspects)
by Vasant V. Ranade (Author), John B. Cannon (Author)


Drug delivery technologies represent a vast, vital area of research and development in pharmaceuticals. The demand for innovative drug delivery systems continues to grow, driving a variety of new developments. Drug Delivery Systems, Third Edition provides a comprehensive review of the latest research and development on drug delivery systems. Coverage includes liposomal, transmucosal, transdermal, oral, polymeric, and monoclonal antibody directed delivery. Each chapter provides a table of marketed and investigational products with numerous practical examples. The book also provides readers with a multitude of possible drug delivery systems that can be used to improve therapeutics, along with global and regulatory perspectives. This third edition contains a chapter on nanoscience and...

Advanced Drug Delivery

Advanced Drug Delivery
by Ashim Mitra (Author), Chi H. Lee (Author), Kun Cheng (Author)


Offering a holistic view of the development of drug delivery systems, Advanced Drug Delivery presents the essential aspects necessary to understand and apply for effective drug delivery fundamentals, including practical issues, integration of pharmaceutics, and molecular biology. A suitable text for graduate and advanced undergraduate students, the book is logically divided into four sections: fundamentals, delivery approaches, disease applications, and future directions. Discussing design, in vitro studies, clinical evaluation, and regulatory approval, each chapter includes objectives and assessment questions.

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems
by Loyd V. Allen Jr. PhD (Editor), Nicholas G. Popovich PhD (Editor), Howard C. Ansel PhD (Editor)


Long established as a core text for pharmaceutics courses, this book is the most comprehensive source on pharmaceutical dosage forms and drug delivery systems. Content coincides with the CAPE, APhA, and NAPLEX® competencies. This edition includes updated drug information and has an increased focus on physical pharmacy. Coverage incorporates all new dosage forms on the market as well as those in the current US Pharmacopoeia-National Formulary. Updated photos are included. An "Applying the Principles and Concepts" section at the end of each chapter provides activities for the application of the material. A companion website includes the fully searchable text and a quiz bank with more than 200 questions written in NAPLEX® format.

Drug Delivery and Targeting: For Pharmacists and Pharmaceutical Scientists

Drug Delivery and Targeting: For Pharmacists and Pharmaceutical Scientists
by Anya M. Hillery (Editor), Andrew W. Lloyd (Editor), James Swarbrick (Editor)


The advances in biotechnology and molecular biology over recent years have resulted in a large number of novel molecules with the potential to revolutionize the treatment and prevention of disease. However, such potential is severely compromised by significant obstacles to delivery of these drugs in vivo. These obstacles are often so great that effective drug delivery and targeting is now recognized as the key to effective development of many therapeutics. Advanced drug delivery and targeting can offer significant advantages to conventional drugs, such as increased efficiency, convenience, and the potential for line extensions and market expansion. An accessible and easy-to-read textbook, Drug Delivery and Targeting for Pharmacists and Pharmaceutical Scientists is the first book to...

Polymers for Controlled Drug Delivery

Polymers for Controlled Drug Delivery
by Peter J. Tarcha (Author)


Polymers for Controlled Drug Delivery addresses the challenges of designing macromolecules that deliver therapeutic agents that function safely and in concert with living organisms. The book primarily discusses classes of polymers and polymeric vehicles, including particulates, such as latexes, coacervates, ion-exchange resins, and liposomes, as well as non-particulate vehicles such as enteric coatings, mediators, and bioadhesives. Other topics discussed include diffusion; biodegradation-controlled delivery; animal model studies for toxicity, metabolism, and elimination testing; and FDA requirements for clinical studies. Drug delivery researchers will find this book to be an invaluable reference tool.

© 2015 BrightSurf.com