Science Current Events | Science News | Brightsurf.com
 

New findings on the birth of the solar system

July 20, 2009

A team of international astrophysicists, including Dr Maria Lugaro from Monash University, has discovered a new explanation for the early composition of our solar system.

The team has found that radioactive nuclei found in the earliest meteorites, dating back billions of years, could have been delivered by a nearby dying giant star of six times the mass of the sun.

Dr Lugaro said the findings could change our current ideas on the origin of the solar system.

"We have known about the early presence of these radioactive nuclei in meteorites since the 1960s, but we do not know where they originated from. The presence of the radioactive nuclei has been previously linked to a nearby supernova explosion, but we are showing now that these nuclei are more compatible with an origin from the winds coming from a large dying star," Dr Lugaro said.

The conclusion was reached by combining stellar observations from telescopes with recently developed theoretical models reproduced on powerful computers of how stars evolve and which nuclear reaction occurs within their interiors.

"We need to know if the presence of radioactive nuclei in young planetary systems is a common or a special event in our galaxy because their presence affected the evolution of the first large rocks (the parent bodies of asteroids and meteorites) in the solar system. These are believed to be the source of much of earth's water, which is essential for life," Dr Lugaro said.

"Within one million years of the formation of the solar system the radioactive nuclei decayed inside the rocks where they were trapped, releasing high-energy photons, which caused the rocks to heat. Since much of earth's water is believed to have originated from these first rocks, the possibility of life on earth depends on their heating history and, in turn, on the presence of radioactive nuclei." Dr Lugaro said.

"What we need to do now is investigate the probability that a dying giant star could have actually been nearby our then young solar system and polluted it with radioactive nuclei. This will inform us on the place where the solar system was born, on the probability that other young planetary system also are polluted with radioactive nuclei, and, eventually, on the probability of having water on terrestrial planets in other planetary systems."

Monash University


Related Radioactive Nuclei Current Events and Radioactive Nuclei News Articles


Scientists get set for simulated nuclear inspection
Some 40 scientists and technicians from around the world will descend on Jordan in November to take part in a simulated on-site inspection of a suspected nuclear test site on the banks of the Dead Sea.

Step closer to birth of the sun
Published in Science, the team led by Dr Maria Lugaro and Professor Alexander Heger, from Monash University, have investigated the solar system's prehistoric phase and the events that led to the birth of the sun.

Evidence for a new nuclear 'magic number'
Researchers have come one step closer to understanding unstable atomic nuclei. A team of researchers from RIKEN, the University of Tokyo and other institutions in Japan and Italy has provided evidence for a new nuclear magic number in the unstable, radioactive calcium isotope 54Ca.

Scientists demonstrate pear shaped atomic nuclei
Scientists at the University of Liverpool have shown that some atomic nuclei can assume the shape of a pear which contributes to our understanding of nuclear structure and the underlying fundamental interactions.

Direct measurements allow detailed look at how quarks of different flavors contribute to spin
Scientists hoping to unravel the mystery of proton spin at the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference particle accelerator at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, have a new tool at their disposal - the first to directly explore how quarks of different types, or "flavors," contribute to the overall spin of the proton.

New 'doubly magic' research reveals role of nuclear shell
Researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT) and six collaborating universities have performed an unprecedented nuclear reaction experiment that explores the unique properties of the "doubly magic" radioactive isotope of 132Sn, or tin-132.

Theoretical nuclear physics in China
In recent years several Large-Scale Scientific Facilities (LSSF) for nuclear, hadronic, and particle physics have been upgraded and constructed in China.

Listening to dark matter
A team of researchers in Canada have made a bold stride in the struggle to detect dark matter. The PICASSO collaboration has documented the discovery of a significant difference between the acoustic signals induced by neutrons and alpha particles in a detector based on superheated liquids.

Star light, star bright: FSU facility duplicating conditions of supernovas
How is matter created? What happens when stars die? Is the universe shrinking, or is it expanding? For decades, scientists have been looking for answers to such "big picture" questions.

Little earth
Arts/science video installation to open in London (January) and Scotland (February).
More Radioactive Nuclei Current Events and Radioactive Nuclei News Articles

© 2016 BrightSurf.com