Science Current Events | Science News |

What makes us unique? Not only our genes

March 19, 2010
What counts is how genes are regulated, say scientists at EMBL and Yale

Once the human genome was sequenced in 2001, the hunt was on for the genes that make each of us unique. But scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and Yale and Stanford Universities in the USA, have found that we differ from each other mainly because of differences not in our genes, but in how they're regulated - turned on or off, for instance. In a study published today in Science, they are the first to compare entire human genomes and determine which changes in the stretches of DNA that lie between genes make gene regulation vary from one person to the next. Their findings hail a new way of thinking about ourselves and our diseases.

The technological advances of the past decade have been so great that scientists can now obtain the genetic sequences - or genomes - of several people in a fraction of the time and for a fraction of the cost it took to determine that first human genome. Moreover, these advances now enable researchers to understand how genes are regulated in humans.

A group of scientists led by Jan Korbel at EMBL and Michael Snyder initially at Yale and now in Stanford were the first to compare individually sequenced human genomes to look for what caused differences in gene regulation amongst ten different people. They focused on non-coding regions - stretches of DNA that lie between genes and, unlike genes, don't hold the instructions for producing proteins. These DNA sequences, which may vary from person to person, can act as anchors to which regulatory proteins, known as transcription factors, attach themselves to switch genes on or off.

Korbel, Snyder, and colleagues found that up to a quarter of all human genes are regulated differently in different people, more than there are genetic variations in genes themselves. The scientists found that many of these differences in how regulatory proteins act are due to changes in the DNA sequences they bind to. In some cases, such changes can be a difference in a single letter of the genetic code, while in others a large section of DNA may be altered. But surprisingly, they discovered even more variations could not be so easily explained. They reasoned that some of these seemingly inexplicable differences might arise if regulatory proteins didn't act alone, but interacted with each other.

"We developed a new approach which enabled us to identify cases where a protein's ability to turn a gene on or off can be affected by interactions with another protein anchored to a nearby area of the genome," Korbel explains. "With it, we can begin to understand where such interactions happen, without having to study every single regulatory protein out there."

The scientists found that even if different people have identical copies of a gene - for instance ORMDL3, a gene known to be involved in asthma in children - the way their cells regulate that gene can vary from person to person.

"Our findings may help change the way we think of ourselves, and of diseases", Snyder concludes: "as well as looking for disease genes, we could start looking at how genes are regulated, and how individual variations in gene regulation could affect patients' reactions."

Finally, Korbel, Snyder and colleagues compared the information on humans with that from a chimpanzee, and found that with respect to gene regulation there seems to be almost as much variation between humans as between us and our primate cousins - a small margin in which may lie important clues both to how we evolved and to what makes us humans different from one another.

In a study published online in Nature yesterday, researchers led by Snyder in the USA and Lars Steinmetz at EMBL in Heidelberg have found that similar differences in gene regulation also occur in an organism which is much farther from us in the evolutionary tree: baker's yeast.

European Molecular Biology Laboratory

Related Gene Regulation Current Events and Gene Regulation News Articles

Physics meets biology to defeat aging
The scientific team of a new biotech company Gero in collaboration with one of the leading academics in the field of aging Prof. Robert J. Shmookler Reis (current world record holder in life extension for model animals - 10 fold for nematodes) has recently brought new insights into biology of aging and age-related diseases, primarily, around the stability and stress resistance of certain gene regulatory networks.

Unlocking fermentation secrets open the door to new biofuels
Researchers from the University of Illinois at Urbana-Champaign have, for the first time, uncovered the complex interdependence and orchestration of metabolic reactions, gene regulation, and environmental cues of clostridial metabolism, providing new insights for advanced biofuel development.

Researchers find molecular mechanisms within fetal lungs that initiate labor
Researchers at UT Southwestern Medical Center have identified two proteins in a fetus' lungs responsible for initiating the labor process, providing potential new targets for preventing preterm birth.

Simultaneous live imaging of a specific gene's transcription and dynamics
Dr. Hiroshi Ochiai and his colleagues, Dr. Takeshi Sugawara (Research Center for the Mathematics on Chromatin Live Dynamics [RcMcD] at Hiroshima University) and Professor Takashi Yamamoto (Graduate School of Science at Hiroshima University), have established a novel live-imaging method termed the "Real-time Observation of Localization and EXpression (ROLEX)" system.

Faster, not stronger: How a protein regulates gene expression
Inside the cell, DNA is tightly coiled and packed with several proteins into a structure called "chromatin", which allows DNA to fit in the cell while also preventing genes from being expressed at the wrong time.

The life and death of beta cells
Diabetes is one of the scourges of modern society, and the number of cases is rising every year. Already, there are over 380 million diabetics around the world.

GTEx -- How our fenetic code regulates gene expression
A new study presents the first analysis of the pilot dataset from the Genotype-Tissue Expression (GTEx) project, which investigates how our underlying DNA regulates gene expression.

Study: Gene regulation underlies the evolution of social complexity in bees
Explaining the evolution of insect society, with sterile society members displaying extreme levels of altruism, has long been a major scientific challenge, dating back to Charles Darwin's day.

Bees follow separate but similar paths in social evolution
There's more than one explanation for how colony-living animals like bees evolve their unique social structure, according to a detailed genome analysis conducted by Karen Kapheim and colleagues.

Can drinking alcohol harm the child before the mother knows she is pregnant?
Alcohol drunk by a mouse in early pregnancy changes the way genes function in the brains of the offspring, shows the recent study conducted at the University of Helsinki.
More Gene Regulation Current Events and Gene Regulation News Articles

Mechanisms of Gene Regulation

Mechanisms of Gene Regulation
by Carsten Carlberg (Author), Ferdinand Molnár (Author)

This textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. This pivotal role for the regulation of gene expression makes this textbook essential reading from students of all the biomedical sciences in order to be better prepared for their specialized disciplines.A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic...

Gene Control

Gene Control
by David Latchman (Author)

Gene Control offers a current description of how gene expression is controlled in eukaryotes, reviewing and summarizing the extensive primary literature into an easily accessible format.  Gene Control is a comprehensively restructured and expanded edition of Latchman’s Gene Regulation: A Eukaryotic Perspective, Fifth Edition. The first part of the book deals with the fundamental processes of gene control at the levels of chromatin structure, transcription, and post-transcriptional processes. Three pairs of chapters deal with each of these aspects, first describing the basic process itself, followed by the manner in which it is involved in controlling gene expression.  The second part of the book deals with the role of gene control in specific biological processes. Certain chapters...

Nutritional Genomics: The Impact of Dietary Regulation of Gene Function on Human Disease

Nutritional Genomics: The Impact of Dietary Regulation of Gene Function on Human Disease
by Wayne R. Bidlack (Editor), Raymond L. Rodriguez (Editor)

The notion of matching diet with an individual’s genetic makeup is transforming the way the public views nutrition as a means of managing health and preventing disease. To fulfill the promise of nutritional genomics, researchers are beginning to reconcile the diverse properties of dietary factors with our current knowledge of genome structure and gene function. What is emerging is a complex system of interactions that make the human genome exquisitely sensitive to our nutritional environment. Nutritional Genomics: The Impact of Dietary Regulation of Gene Function on Human Disease provides an integrated view of how genomic and epigenetic processes modulate the impact of dietary factors on health. Written as a resource for researchers, nutrition educators, and policy makers, this book...

Anatomy of Gene Regulation: A Three-dimensional Structural Analysis

Anatomy of Gene Regulation: A Three-dimensional Structural Analysis
by Panagiotis A. Tsonis (Author)

Anatomy of Gene Regulation is the first book to present the parts and processes of gene regulation at the three-dimensional level. Vivid structures of nucleic acids and their companion proteins are revealed in full-color, three dimensional form. Beginning with a general introduction to three-dimensional structures, the book looks at the organization of the genome, the structure of DNA, DNA replication and transcription, splicing, protein synthesis, and ultimate protein death. This concise and unique synthesis and its accompanying web site offer insight into gene regulation, and into the development of methods to interfere with regulation at diseased states.

Gene Regulation

Gene Regulation
by G. S. Miglani (Author)

GENE REGULATION deals with the molecular mechanisms of regulation of gene expression in viruses, bacteria and eukaryotes. Role of epigenetic modifications in gene regulation is dealt with in detail. While molecular basis of development and evolution in light of the recent discoveries finds a special mention, in the last chapter, modification and modulation of gene expression and exploitation of gene regulation has been discussed. The Genetic material and gene expression have been described only very briefly in the first chapter. Gene Regulation is primarily designed as a text book for senior undergraduate and post-graduate students. Undergraduate and graduate students, teachers and researchers in any discipline of life sciences, agricultural sciences, medicine, and biotechnology in all...

Epigenetics: How Environment Shapes Our Genes

Epigenetics: How Environment Shapes Our Genes
by Richard C. Francis (Author)

Goodbye, genetic blueprint. . . . The first book for general readers ?on the game-changing field of epigenetics. The burgeoning new science of epigenetics offers a cornucopia of insights―some comforting, some frightening. For example, the male fetus may be especially vulnerable to certain common chemicals in our environment, in ways that damage not only his own sperm but also the sperm of his sons. And it’s epigenetics that causes identical twins to vary widely in their susceptibility to dementia and cancer. But here’s the good news: unlike mutations, epigenetic effects are reversible. Indeed, epigenetic engineering is the future of medicine. 18 illustrations

Ingenious Genes: How Gene Regulation Networks Evolve to Control Development (Life and Mind: Philosophical Issues in Biology and Psychology)

Ingenious Genes: How Gene Regulation Networks Evolve to Control Development (Life and Mind: Philosophical Issues in Biology and Psychology)
by Roger Sansom (Author)

Each of us is a collection of more than ten trillion cells, busy performing tasks crucial to our continued existence. Gene regulation networks, consisting of a subset of genes called transcription factors, control cellular activity, producing the right gene activities for the many situations that the multiplicity of cells in our bodies face. Genes working together make up a truly ingenious system. In this book, Roger Sansom investigates how gene regulation works and how such a refined but simple system evolved. Sansom describes in detail two frameworks for understanding gene regulation. The first, developed by the theoretical biologist Stuart Kauffman, holds that...

RNA Worlds: From Life's Origins to Diversity in Gene Regulation

RNA Worlds: From Life's Origins to Diversity in Gene Regulation
by John F. Atkins (Editor), Raymond F. Gesteland (Editor), Thomas R. Cech (Editor)

Once thought to be just a messenger that allows genetic information encoded in DNA to direct the formation of proteins, RNA (ribonucleic acid) is now known to be a highly versatile molecule that has multiple roles in cells. It can function as an enzyme, scaffold various subcellular structures, and regulate gene expression through a variety of mechanisms, as well as act as a key component of the protein synthesis and splicing machinery. Perhaps most interestingly, increasing evidence indicates that RNA preceded DNA as the hereditary material and played a crucial role in the early evolution of life on Earth. This volume reviews our understanding of two RNA worlds: the primordial RNA world before DNA, in which RNA was both information store and biocatalyst; and the contemporary RNA world, in...

Androgen-Responsive Genes in Prostate Cancer: Regulation, Function and Clinical Applications

Androgen-Responsive Genes in Prostate Cancer: Regulation, Function and Clinical Applications
by Zhou Wang (Editor)

This book examines current understanding of mechanisms underlying the regulation of androgen-responsive gene expression, and functions of androgen-responsive genes in carcinogenesis, including cell growth, angiogenesis and epithelial-to-mesenchyme transition.

Evolution 2.0: Breaking the Deadlock Between Darwin and Design

Evolution 2.0: Breaking the Deadlock Between Darwin and Design
by Perry Marshall (Author)

150 Years Later, the Debate on Evolution Still Rages. Both Sides Are Half-Right. And Both Are Wrong.

Meet the opponents:

In one corner - Proponents of Intelligent Design like William Dembski, Stephen Meyer, and Michael Behe. Many defy scientific consensus, maintaining evolution is a fraud. They challenge decades of data in several branches of science: biology, chemistry, genetics and paleontology.

In the other corner - Devout Neo-Darwinists like Richard Dawkins, Daniel Dennett, and Jerry Coyne, who insist evolution happens by blind random accident. Interestingly, their books omit the latest science, glossing over crucial questions and fascinating details.

 But what if both sides are half-right?

What if both sides are missing something important, clinging...

© 2015