Science Current Events | Science News | Brightsurf.com
 

What makes us unique? Not only our genes

March 19, 2010

What counts is how genes are regulated, say scientists at EMBL and Yale

Once the human genome was sequenced in 2001, the hunt was on for the genes that make each of us unique. But scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and Yale and Stanford Universities in the USA, have found that we differ from each other mainly because of differences not in our genes, but in how they're regulated - turned on or off, for instance. In a study published today in Science, they are the first to compare entire human genomes and determine which changes in the stretches of DNA that lie between genes make gene regulation vary from one person to the next. Their findings hail a new way of thinking about ourselves and our diseases.

The technological advances of the past decade have been so great that scientists can now obtain the genetic sequences - or genomes - of several people in a fraction of the time and for a fraction of the cost it took to determine that first human genome. Moreover, these advances now enable researchers to understand how genes are regulated in humans.

A group of scientists led by Jan Korbel at EMBL and Michael Snyder initially at Yale and now in Stanford were the first to compare individually sequenced human genomes to look for what caused differences in gene regulation amongst ten different people. They focused on non-coding regions - stretches of DNA that lie between genes and, unlike genes, don't hold the instructions for producing proteins. These DNA sequences, which may vary from person to person, can act as anchors to which regulatory proteins, known as transcription factors, attach themselves to switch genes on or off.

Korbel, Snyder, and colleagues found that up to a quarter of all human genes are regulated differently in different people, more than there are genetic variations in genes themselves. The scientists found that many of these differences in how regulatory proteins act are due to changes in the DNA sequences they bind to. In some cases, such changes can be a difference in a single letter of the genetic code, while in others a large section of DNA may be altered. But surprisingly, they discovered even more variations could not be so easily explained. They reasoned that some of these seemingly inexplicable differences might arise if regulatory proteins didn't act alone, but interacted with each other.

"We developed a new approach which enabled us to identify cases where a protein's ability to turn a gene on or off can be affected by interactions with another protein anchored to a nearby area of the genome," Korbel explains. "With it, we can begin to understand where such interactions happen, without having to study every single regulatory protein out there."

The scientists found that even if different people have identical copies of a gene - for instance ORMDL3, a gene known to be involved in asthma in children - the way their cells regulate that gene can vary from person to person.

"Our findings may help change the way we think of ourselves, and of diseases", Snyder concludes: "as well as looking for disease genes, we could start looking at how genes are regulated, and how individual variations in gene regulation could affect patients' reactions."

Finally, Korbel, Snyder and colleagues compared the information on humans with that from a chimpanzee, and found that with respect to gene regulation there seems to be almost as much variation between humans as between us and our primate cousins - a small margin in which may lie important clues both to how we evolved and to what makes us humans different from one another.

In a study published online in Nature yesterday, researchers led by Snyder in the USA and Lars Steinmetz at EMBL in Heidelberg have found that similar differences in gene regulation also occur in an organism which is much farther from us in the evolutionary tree: baker's yeast.

European Molecular Biology Laboratory


Related Gene Regulation Current Events and Gene Regulation News Articles


Shedding light on the 'dark matter' of the genome
What used to be dismissed by many as "junk DNA" is back with a vengeance as growing data points to the importance of non-coding RNAs (ncRNAs) -- genome's messages that do not code for proteins -- in development and disease.

Steps that lead to genes being switched on revealed in atomic simulation
Proteins are essential for processes that sustain life. They are created in cells through a process called gene expression, which uses instructions from stretches of DNA called genes to build proteins.

Researchers visualize brain's serotonin pump, provide blueprint for new, more effective SSRIs
Researchers at Oregon Health & Science University's Vollum Institute have uncovered remarkably detailed 3-D views of one of the most important transporters in the brain - the serotonin transporter.

Maternal smoking during pregnancy leaves its lasting mark on the child's genetic make-up
Maternal smoking during pregnancy is harmful to the unborn child as well as the mother.

Study identifies specific gene network that promotes nervous system repair
Whether or not nerve cells are able to regrow after injury depends on their location in the body.

Exact pol(e) position -- precisely where the polymerase is changed
Scientists at the Helmholtz Zentrum München, working with colleagues from the Ludwig-Maximilians-Universität München, have developed a method for the thorough analysis of protein modifications.

Advance improves cutting and pasting with CRISPR-Cas9 gene editing
University of California, Berkeley, researchers have made a major improvement in CRISPR-Cas9 technology that achieves an unprecedented success rate of 60 percent when replacing a short stretch of DNA with another.

A father's diet affects the RNA of his sperm, mouse study shows
Two new studies in mice demonstrate how a father's diet affects levels of specific small RNAs in his sperm, which in turn can affect gene regulation in offspring.

Schizophrenia-associated genetic variants affect gene regulation in the developing brain
An international research collaboration has shed new light on how DNA sequence variation can influence gene activity in the developing human brain.

Unpacking embryonic pluripotency
Researchers at EMBL's European Bioinformatics Institute (EMBL-EBI) and the Wellcome Trust- Medical Research Council Cambridge Stem Cell Institute at the University of Cambridge have identified factors that spark the formation of pluripotent cells.
More Gene Regulation Current Events and Gene Regulation News Articles

Gene Regulation: A Eukaryotic Perspective

Gene Regulation: A Eukaryotic Perspective
by David S. Latchman (Author)


Gene Regulation provides a complete and concise picture of the processes regulating gene expression in higher organisms and man. The second edition of this well reviewed textbook has been extensively updated to reflect the scientific progress made in this area over the last four years.

Nutritional Genomics: The Impact of Dietary Regulation of Gene Function on Human Disease

Nutritional Genomics: The Impact of Dietary Regulation of Gene Function on Human Disease
by Wayne R. Bidlack (Editor), Raymond L. Rodriguez (Editor)


The notion of matching diet with an individual’s genetic makeup is transforming the way the public views nutrition as a means of managing health and preventing disease. To fulfill the promise of nutritional genomics, researchers are beginning to reconcile the diverse properties of dietary factors with our current knowledge of genome structure and gene function. What is emerging is a complex system of interactions that make the human genome exquisitely sensitive to our nutritional environment. Nutritional Genomics: The Impact of Dietary Regulation of Gene Function on Human Disease provides an integrated view of how genomic and epigenetic processes modulate the impact of dietary factors on health. Written as a resource for researchers, nutrition educators, and policy makers, this book...

Genes, Trade, and Regulation: The Seeds of Conflict in Food Biotechnology

Genes, Trade, and Regulation: The Seeds of Conflict in Food Biotechnology
by Thomas Bernauer (Author)


Agricultural (or "green") biotechnology is a source of growing tensions in the global trading system, particularly between the United States and the European Union. Genetically modified food faces an uncertain future. The technology behind it might revolutionize food production around the world. Or it might follow the example of nuclear energy, which declined from a symbol of socioeconomic progress to become one of the most unpopular and uneconomical innovations in history. This book provides novel and thought-provoking insights into the fundamental policy issues involved in agricultural biotechnology. Thomas Bernauer explains global regulatory polarization and trade conflict in this area. He then evaluates cooperative and unilateral policy tools for coping with trade tensions. Arguing...

RNA Worlds: From Life's Origins to Diversity in Gene Regulation

RNA Worlds: From Life's Origins to Diversity in Gene Regulation
by John F. Atkins (Editor), Raymond F. Gesteland (Editor), Thomas R. Cech (Editor)


Once thought to be just a messenger that allows genetic information encoded in DNA to direct the formation of proteins, RNA (ribonucleic acid) is now known to be a highly versatile molecule that has multiple roles in cells. It can function as an enzyme, scaffold various subcellular structures, and regulate gene expression through a variety of mechanisms, as well as act as a key component of the protein synthesis and splicing machinery. Perhaps most interestingly, increasing evidence indicates that RNA preceded DNA as the hereditary material and played a crucial role in the early evolution of life on Earth. This volume reviews our understanding of two RNA worlds: the primordial RNA world before DNA, in which RNA was both information store and biocatalyst; and the contemporary RNA world, in...

Mechanisms of Gene Regulation

Mechanisms of Gene Regulation
by Carsten Carlberg (Author), Ferdinand Molnár (Author)


This textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. This pivotal role for the regulation of gene expression makes this textbook essential reading from students of all the biomedical sciences in order to be better prepared for their specialized disciplines.A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic...

Regulation of Gene Expression by Small RNAs

Regulation of Gene Expression by Small RNAs
by Rajesh K. Gaur (Editor), John J. Rossi (Editor)


New Findings Revolutionize Concepts of Gene Function Endogenous small RNAs have been found in various organisms, including humans, mice, flies, worms, fungi, and bacteria. Furthermore, it’s been shown that microRNAs acting as cellular rheostats have the ability to modulate gene expression. In higher eukaryotes, microRNAs may regulate as much as 50 percent of gene expression. Regulation of Gene Expression by Small RNAs brings together the pioneering work of researchers who discuss their work involving a wide variety of small RNA regulatory pathways in organisms ranging from bacteria to humans. In addition to exploring the biogenesis and processing of these regulatory RNAs, they also consider the functional importance of these pathways in host organisms. Assisting current and future...

Epigenetic Gene Expression and Regulation

Epigenetic Gene Expression and Regulation
by Suming Huang (Editor), Michael D Litt (Editor), C. Ann Blakey (Editor)


Epigenetic Gene Expression and Regulation reviews current knowledge on the heritable molecular mechanisms that regulate gene expression, contribute to disease susceptibility, and point to potential treatment in future therapies. The book shows how these heritable mechanisms allow individual cells to establish stable and unique patterns of gene expression that can be passed through cell divisions without DNA mutations, thereby establishing how different heritable patterns of gene regulation control cell differentiation and organogenesis, resulting in a distinct human organism with a variety of differing cellular functions and tissues. The work begins with basic biology, encompasses methods, cellular and tissue organization, topical issues in epigenetic evolution and environmental...

Molecular Biology of the Gene, Sixth Edition

Molecular Biology of the Gene, Sixth Edition
by James D. Watson (Author)


Though completely up-to-date with the latest research advances, the Sixth Edition of James D. Watson’s classic book, Molecular Biology of the Gene retains the distinctive character of earlier editions that has made it the most widely used book in molecular biology. Twenty-two concise chapters, co-authored by six highly respected biologists, provide current, authoritative coverage of an exciting, fast-changing discipline. Mendelian View of the World, Nucleic Acids Convey Genetic Information,The Importance of Weak Chemical Interactions, The Importance of High Energy Bonds, Weak and Strong Bonds Determine Macromolecular Interactions, The Structures of DNA and RNA, Genome Structure, Chromatin and the Nucleosome, The Replication of DNA, The Mutability and Repair of DNA, Homologous...

Chromatin and Gene Regulation: Molecular Mechanisms in Epigenetics

Chromatin and Gene Regulation: Molecular Mechanisms in Epigenetics
by B. M. Turner (Author)


Written in an informal and accessible style, Chromatin and Gene Regulation enables the reader to understand the science of this rapidly moving field. Chromatin is a fundamental component in the network of controls that regulates gene expression. Many human diseases have been linked to disruption of these control processes by genetic or environmental factors, and unravelling the mechanisms by which they operate is one of the most exciting and rapidly developing areas of modern biology. Chromatin is central both to the rapid changes in gene transcription by which cells respond to changes in their environment and also to the maintenance of gene expression patterns from one cell generation to the next. This book will be an invaluable guide to undergraduate and postgraduate students in the...

Gene Regulation: Methods and Protocols (Methods in Molecular Biology)

Gene Regulation: Methods and Protocols (Methods in Molecular Biology)
by Minou Bina (Editor)


In this volume of Methods in Molecular Biology™, expert investigators offer comprehensive, complementary, and cutting-edge technologies for studies of gene regulation. The chapters of Gene Regulation: Methods and Protocols are organized to provide an integrated and a coherent view of control systems and their associated components. The protocols are broad in their scope. They include molecular, biochemical, spectroscopic techniques as well as high throughput strategies. Written in the highly successful Methods in Molecular Biology™ series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.Comprehensive and...

© 2016 BrightSurf.com