Science Current Events | Science News | Brightsurf.com
 

What makes us unique? Not only our genes

March 19, 2010
What counts is how genes are regulated, say scientists at EMBL and Yale

Once the human genome was sequenced in 2001, the hunt was on for the genes that make each of us unique. But scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and Yale and Stanford Universities in the USA, have found that we differ from each other mainly because of differences not in our genes, but in how they're regulated - turned on or off, for instance. In a study published today in Science, they are the first to compare entire human genomes and determine which changes in the stretches of DNA that lie between genes make gene regulation vary from one person to the next. Their findings hail a new way of thinking about ourselves and our diseases.

The technological advances of the past decade have been so great that scientists can now obtain the genetic sequences - or genomes - of several people in a fraction of the time and for a fraction of the cost it took to determine that first human genome. Moreover, these advances now enable researchers to understand how genes are regulated in humans.

A group of scientists led by Jan Korbel at EMBL and Michael Snyder initially at Yale and now in Stanford were the first to compare individually sequenced human genomes to look for what caused differences in gene regulation amongst ten different people. They focused on non-coding regions - stretches of DNA that lie between genes and, unlike genes, don't hold the instructions for producing proteins. These DNA sequences, which may vary from person to person, can act as anchors to which regulatory proteins, known as transcription factors, attach themselves to switch genes on or off.

Korbel, Snyder, and colleagues found that up to a quarter of all human genes are regulated differently in different people, more than there are genetic variations in genes themselves. The scientists found that many of these differences in how regulatory proteins act are due to changes in the DNA sequences they bind to. In some cases, such changes can be a difference in a single letter of the genetic code, while in others a large section of DNA may be altered. But surprisingly, they discovered even more variations could not be so easily explained. They reasoned that some of these seemingly inexplicable differences might arise if regulatory proteins didn't act alone, but interacted with each other.

"We developed a new approach which enabled us to identify cases where a protein's ability to turn a gene on or off can be affected by interactions with another protein anchored to a nearby area of the genome," Korbel explains. "With it, we can begin to understand where such interactions happen, without having to study every single regulatory protein out there."

The scientists found that even if different people have identical copies of a gene - for instance ORMDL3, a gene known to be involved in asthma in children - the way their cells regulate that gene can vary from person to person.

"Our findings may help change the way we think of ourselves, and of diseases", Snyder concludes: "as well as looking for disease genes, we could start looking at how genes are regulated, and how individual variations in gene regulation could affect patients' reactions."

Finally, Korbel, Snyder and colleagues compared the information on humans with that from a chimpanzee, and found that with respect to gene regulation there seems to be almost as much variation between humans as between us and our primate cousins - a small margin in which may lie important clues both to how we evolved and to what makes us humans different from one another.

In a study published online in Nature yesterday, researchers led by Snyder in the USA and Lars Steinmetz at EMBL in Heidelberg have found that similar differences in gene regulation also occur in an organism which is much farther from us in the evolutionary tree: baker's yeast.

European Molecular Biology Laboratory


Related Gene Regulation Current Events and Gene Regulation News Articles


Synthetic biology on ordinary paper, results off the page
New achievements in synthetic biology announced today by researchers at the Wyss Institute for Biologically Inspired Engineering, which will allow complex cellular recognition reactions to proceed outside of living cells, will dare scientists to dream big: there could one day be inexpensive, shippable and accurate test kits that use saliva or a drop of blood to identify specific disease or infection - a feat that could be accomplished anywhere in the world, within minutes and without laboratory support, just by using a pocket-sized paper diagnostic tool.

Vesicles influence the function of nerve cells
Tiny vesicles containing protective substances which they transmit to nerve cells apparently play an important role in the functioning of neurons.

News Center RCas9: A Programmable RNA Editing Tooll
A powerful scientific tool for editing the DNA instructions in a genome can now also be applied to RNA, the molecule that translates DNA's genetic instructions into the production of proteins.

A new target for controlling inflammation? Long non-coding RNAs fine-tune the immune system
Regulation of the human immune system's response to infection involves an elaborate network of complex signaling pathways that turn on and off multiple genes.

Gene doubling shapes the world: Instant speciation, biodiversity, and the root of our existence
What do seedless watermelon, salmon, and strawberries all have in common? Unlike most eukaryotic multicellular organisms that have two sets of chromosomes and are diploid, these organisms are all polyploid, meaning they have three or more sets of chromosomes-seedless watermelon and salmon have 3 and 4 sets of chromosomes, respectively, and strawberries have 10!

Human genome was shaped by an evolutionary arms race with itself
New findings by scientists at the University of California, Santa Cruz, suggest that an evolutionary arms race between rival elements within the genomes of primates drove the evolution of complex regulatory networks that orchestrate the activity of genes in every cell of our bodies.

Lack of Thyroid Hormone Blocks Hearing Development
Fatigue, weight gain, chills, hair loss, anxiety, excessive perspiration - these symptoms are a few of the signs that the thyroid gland, which regulates the body's heart rate and plays a crucial role in its metabolism, has gone haywire.

Crop improvement and resistance to pathogens benefits from non-coding RNA studies
With the rise of emerging economies around the world and a concomitant upgrade of health care systems, the global population has been rapidly expanding. As a consequence, worldwide demand for agricultural products is also growing.

Researchers discover a key to making new muscles
Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) have developed a novel technique to promote tissue repair in damaged muscles.

New mechanism in gene regulation revealed
The information encoded in our genes is translated into proteins, which ultimately mediate biological functions in an organism.
More Gene Regulation Current Events and Gene Regulation News Articles

Gene Control

Gene Control
by David Latchman (Author)


Gene Control offers a current description of how gene expression is controlled in eukaryotes, reviewing and summarizing the extensive primary literature into an easily accessible format.  Gene Control is a comprehensively restructured and expanded edition of Latchman’s Gene Regulation: A Eukaryotic Perspective, Fifth Edition. The first part of the book deals with the fundamental processes of gene control at the levels of chromatin structure, transcription, and post-transcriptional processes. Three pairs of chapters deal with each of these aspects, first describing the basic process itself, followed by the manner in which it is involved in controlling gene expression.  The second part of the book deals with the role of gene control in specific biological processes. Certain chapters...

Mechanisms of Gene Regulation

Mechanisms of Gene Regulation
by Carsten Carlberg (Author), Ferdinand Molnár (Author)


This textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. This pivotal role for the regulation of gene expression makes this textbook essential reading from students of all the biomedical sciences in order to be better prepared for their specialized disciplines.A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic...

Gene Regulation

Gene Regulation
by G. S. Miglani (Author)


GENE REGULATION deals with the molecular mechanisms of regulation of gene expression in viruses, bacteria and eukaryotes. Role of epigenetic modifications in gene regulation is dealt with in detail. While molecular basis of development and evolution in light of the recent discoveries finds a special mention, in the last chapter, modification and modulation of gene expression and exploitation of gene regulation has been discussed. The Genetic material and gene expression have been described only very briefly in the first chapter. Gene Regulation is primarily designed as a text book for senior undergraduate and post-graduate students. Undergraduate and graduate students, teachers and researchers in any discipline of life sciences, agricultural sciences, medicine, and biotechnology in all...

Ingenious Genes: How Gene Regulation Networks Evolve to Control Development (Life and Mind: Philosophical Issues in Biology and Psychology)

Ingenious Genes: How Gene Regulation Networks Evolve to Control Development (Life and Mind: Philosophical Issues in Biology and Psychology)
by Roger Sansom (Author)


Each of us is a collection of more than ten trillion cells, busy performing tasks crucial to our continued existence. Gene regulation networks, consisting of a subset of genes called transcription factors, control cellular activity, producing the right gene activities for the many situations that the multiplicity of cells in our bodies face. Genes working together make up a truly ingenious system. In this book, Roger Sansom investigates how gene regulation works and how such a refined but simple system evolved. Sansom describes in detail two frameworks for understanding gene regulation. The first, developed by the theoretical biologist Stuart Kauffman, holds that...

RNA Worlds: From Life's Origins to Diversity in Gene Regulation

RNA Worlds: From Life's Origins to Diversity in Gene Regulation
by John F. Atkins (Editor), Raymond F. Gesteland (Editor), Thomas R. Cech (Editor)


Once thought to be just a messenger that allows genetic information encoded in DNA to direct the formation of proteins, RNA (ribonucleic acid) is now known to be a highly versatile molecule that has multiple roles in cells. It can function as an enzyme, scaffold various subcellular structures, and regulate gene expression through a variety of mechanisms, as well as act as a key component of the protein synthesis and splicing machinery. Perhaps most interestingly, increasing evidence indicates that RNA preceded DNA as the hereditary material and played a crucial role in the early evolution of life on Earth. This volume reviews our understanding of two RNA worlds: the primordial RNA world before DNA, in which RNA was both information store and biocatalyst; and the contemporary RNA world, in...

Molecular Biology of the Gene, Sixth Edition

Molecular Biology of the Gene, Sixth Edition
by James D. Watson (Author)


Though completely up-to-date with the latest research advances, the Sixth Edition of James D. Watson’s classic book, Molecular Biology of the Gene retains the distinctive character of earlier editions that has made it the most widely used book in molecular biology. Twenty-two concise chapters, co-authored by six highly respected biologists, provide current, authoritative coverage of an exciting, fast-changing discipline. Mendelian View of the World, Nucleic Acids Convey Genetic Information,The Importance of Weak Chemical Interactions, The Importance of High Energy Bonds, Weak and Strong Bonds Determine Macromolecular Interactions, The Structures of DNA and RNA, Genome Structure, Chromatin and the Nucleosome, The Replication of DNA, The Mutability and Repair of DNA, Homologous...

Gene Regulation (Advanced Texts)

Gene Regulation (Advanced Texts)
by Taylor & Francis


Gene regulation is an essential process in the development and maintenance of a healthy body, and as such, is a central focus in both basic science and medical research.  Gene Regulation, Fifth Edition provides the student and researcher with a clear, up-to-date description of gene regulation in eukaryotes, distilling the vast and complex primary literature into a concise overview.

  Gene Regulation by Steroid Hormones IV
by Arun K. Roy (Editor), James H. Clark (Editor)


This volume summarizes the Fourth Meadowbrook Symposium held in October 1988. Exciting new findings are discussed in the following areas: The synthesis of a nucleotide sequence that binds a specific steroid receptor and acts as controlling element for gene expression; the control of gene transcription by the interaction between transacting factors and DNA recognition sequences; the membership of the transacting factors in a large gene family that includes also steroid hormone receptors, transcription factors, protooncogenes, and homeobox proteins. Other topics are receptor down regulation and quantitive relationships between receptor binding and biological response.

Chromatin and Gene Regulation: Molecular Mechanisms in Epigenetics

Chromatin and Gene Regulation: Molecular Mechanisms in Epigenetics
by B. M. Turner (Author)


Written in an informal and accessible style, Chromatin and Gene Regulation enables the reader to understand the science of this rapidly moving field. Chromatin is a fundamental component in the network of controls that regulates gene expression. Many human diseases have been linked to disruption of these control processes by genetic or environmental factors, and unravelling the mechanisms by which they operate is one of the most exciting and rapidly developing areas of modern biology. Chromatin is central both to the rapid changes in gene transcription by which cells respond to changes in their environment and also to the maintenance of gene expression patterns from one cell generation to the next. This book will be an invaluable guide to undergraduate and postgraduate students in the...

Deep Nutrition: Why Your Genes Need Traditional Food

Deep Nutrition: Why Your Genes Need Traditional Food
by Catherine Shanahan (Author), Luke Shanahan (Author)


Deep Nutrition illustrates how our ancestors used nourishment to sculpt their anatomy, engineering bodies of extraordinary health and beauty. The length of our limbs, the shape of our eyes, and the proper function of our organs are all gifts of our ancestor's collective culinary wisdom. Citing the foods of traditional cultures from the Ancient Egyptians and the Maasai to the Japanese and the French, the Shanahans identify four food categories all the world's healthiest diets have in common, the Four Pillars of World Cuisine. Using the latest research in physiology and genetics, Dr. Shanahan explains why your family's health depends on eating these foods. In a world of competing nutritional ideologies, Deep Nutrition gives us the full picture, empowering us to take control of our destiny...

© 2014 BrightSurf.com