Science Current Events | Science News |

Rare Disease in Amish Children Sheds Light on Common Neurological Disorders, Penn Study Shows

May 12, 2010
PHILADELPHIA - So often the rare informs the common. Penn researchers investigating a regulatory protein involved in a rare genetic disease have shown that it may be related to epileptic and autistic symptoms in other more common neurological disorders.

A team of researchers from the University of Pennsylvania School of Medicine, led by Peter B. Crino, MD, PhD, associate professor of Neurology and director of the Penn Epilepsy Center, demonstrate how mutations in the STRAD-alpha gene can cause a disease called PMSE (polyhydramnios, megalencephaly, and symptomatic epilepsy) syndrome, found in a handful of Amish children. PMSE is characterized by an abnormally large brain, cognitive disability, and severe, treatment-resistant epilepsy.

Specifically, in an animal model, they found that the lack of the STRAD-alpha protein due to genetic mutations causes activation of the signaling pathway involving another protein called mTOR. In humans, this in turn may promote abnormal cell growth and cognitive problems in the developing brains of children. STRAD-alpha and mTOR proteins are part of a complex molecular network implicated in other, more common neurological disorders, many of which have autism-like symptoms as a component.

"The identification of a new gene that regulates mTOR provides fascinating insights into how mTOR pathway dysfunction may be associated with neurological disorders," says Crino. "Each new mTOR regulatory protein that is identified provides a new possible therapeutic target for drug development and treatment."

The research on PMSE - published this month in the Journal of Clinical Investigation - reveals clues about more common neurological disorders characterized by benign tumors and malformations of the brain, the most common of which is tuberous sclerosis complex (TSC). The root cause of TSC also lies in mutations in proteins along the mTOR pathway, however a different protein is affected compared to PMSE.

"It is quite compelling that TSC, a relatively common disorder, and PMSE, a rare disorder, are linked by a common cellular pathway, and exhibit similar severe neurological features," notes Crino. "In our study, we found that we could reverse some of the cellular features that result from STRAD-alpha deficiency in cell culture models of PMSE. This provides important conceptual support for more widespread treatment approaches that modify mTOR signaling in neurological disorders associated with epilepsy, autism, and cognitive disability."

Current estimates place tuberous sclerosis complex-affected births at one in 6,000. Nearly 1 million people worldwide are known to have TSC, with approximately 50,000 in the United States.

PMSE, on the other had, has only been described in 25 people in Lancaster County, PA. It's incidence among other Amish populations, let alone the rest of the country, is unknown. PMSE is also known as pretzel syndrome in the Amish community, because the lax joints of patients fold over easily. PMSE was identified in an Amish, or Old Order Mennonite pediatric population in 2007 by researchers from Penn and the Clinic for Special Children in Lancaster, PA, a genetic clinic devoted to the needs of the Amish.

The mTOR pathway normally controls cell growth, but in PMSE uncontrolled mTOR signaling leads to increases in brain size and areas in which the cerebral cortex is malformed. To prove this, the researchers knocked down the activity of the STRAD-alpha protein in a mouse model and caused malformations of the developing brain. The structure of these malformations was similar to what is seen in human PMSE and TSC and supports the conclusion that normal brain development in part depends on normal STRAD-alpha function. Localized brain malformations are among the most common causes of epilepsy and neurological disability in children.

This research was funded by the National Institute of Neurological Diseases and Stroke.

Ksenia Orlova, PhD, a graduate student in the Crino lab and Kevin Strauss, MD, Medical Director at the Clinic for Special Children, were also co-authors on the JCI paper.

Penn Medicine

Related Neurological Disorders Current Events and Neurological Disorders News Articles

Dormant viral genes may awaken to cause ALS
Scientists at the National Institutes of Health discovered that reactivation of ancient viral genes embedded in the human genome may cause the destruction of neurons in some forms of amyotrophic lateral sclerosis (ALS).

Study offers insight on how a new class of antidepressants works
A new class of drugs under development to treat depression has shown some success by targeting brain cells' ability to respond to the chemical messenger glutamate. But the mechanism by which these experimental therapies work has remained unknown.

Kessler researchers link spatial neglect after stroke with poor outcomes
Using the Kessler Foundation Neglect Assessment Process (KF-NAP), Kessler researchers found a high rate of spatial neglect among inpatients with stroke.

Research discovery leads to potential diagnostic for assessing breast cancer recurrence
Every woman successfully treated for breast cancer lives with the knowledge that it could come back.

UCI study uncovers anticonvulsant effects of valproic acid
University of California, Irvine researchers with the School of Medicine have identified the mechanism by which valproic acid controls epileptic seizures, and by doing so, also revealed an underlying factor of seizures.

New model of cognitive flexibility gives insight into autism spectrum disorder
Cognitive flexibility is the ability to shift our thoughts and adapt our behavior to the changing environment.

Parkinson's disease brain cells at risk of burnout, like an overheating motor
The death of brain cells in Parkinson's disease may be caused by a form of cellular energy crisis in neurons that require unusually high quantities of energy to carry out their job of regulating movement, researchers at the University of Montreal reported today.

Surprised? Cholinergic neurons send broadcasts enabling us to learn from the unexpected
When a large combat unit, widely dispersed in dense jungle, goes to battle, no single soldier knows precisely how his actions are affecting the unit's success or failure.

Jammed up cellular highways may initiate dementia and ALS
Johns Hopkins researchers say they have discovered some of the first steps in how a very common gene mutation causes the brain damage associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).

Antidepressants fine-tune brain reward pathway to lessen neuropathic pain
Commonly used antidepressant drugs change levels of a key signaling protein in the brain region that processes both pain and mood, according to a study conducted at the Icahn School of Medicine at Mount Sinai and published August 24 in the Proceedings of the National Academy of Sciences (PNAS).
More Neurological Disorders Current Events and Neurological Disorders News Articles

© 2015