Science Current Events | Science News | Brightsurf.com
 

'Can you hear me now?' Researchers detail how neurons decide how to transmit information

March 28, 2011

PITTSBURGH-There are billions of neurons in the brain and at any given time tens of thousands of these neurons might be trying to send signals to one another. Much like a person trying to be heard by his friend across a crowded room, neurons must figure out the best way to get their message heard above the din.

Researchers from the Center for the Neural Basis of Cognition, a joint program between Carnegie Mellon University and the University of Pittsburgh, have found two ways that neurons accomplish this, establishing a fundamental mechanism by which neurons communicate. The findings have been published in an online early edition of Proceedings of the National Academy of Sciences (PNAS).

"Neurons face a universal communications conundrum. They can speak together and be heard far and wide, or they can speak individually and say more. Both are important. We wanted to find out how neurons choose between these strategies," said Nathan Urban, the Dr. Frederick A. Schwertz Distinguish Professor of Life Sciences and head of the Department of Biological Sciences at CMU.

Neurons communicate by sending out electrical impulses called action potentials or "spikes." These spikes code information much like a version of Morse code with only dots and no dashes. Groups of neurons can choose to communicate information in one of two ways: by spiking simultaneously or by spiking separately.

To find out how the brain decided which method to use to process a sensory input, the researchers looked at mitral cell neurons in the brain's olfactory bulb - the part of the brain that sorts out smells and a common model for studying global information processing. Using slice electrophysiology and computer simulations, the researchers found that the brain had a clever strategy for ensuring that the neurons' message was being heard.

Over the short time scale of a few milliseconds, the brain engaged its inhibitory circuitry to make the neurons fire in synchrony. This simultaneous, correlated firing creates a loud, but simple, signal. The effect was much like a crowd at a sporting event chanting, "Let's go team!" Over short time intervals, individual neurons produced the same short message, increasing the effectiveness with which activity was transmitted to other brain areas. The researchers say that in both human and neuronal communication alike, this collective communication works well for simple messages, but not for longer or more complex messages that contain more intricate information.

The neurons studied used longer timescales (around one second) to convey these more complex concepts. Over longer time intervals, the inhibitory circuitry generated a form of competition between neurons, so that the more strongly activated neurons silenced the activity of weakly activated neurons, enhancing the differences in their firing rates and making their activity less correlated. Each neuron was able to communicate a different piece of information about the stimulus without being drowned out by the chatter of competing neurons. It would be like being in a group where each person spoke in turn. The room would be much quieter than a sports arena and the immediate audience would be able to listen and learn much more complex information.

Researchers believe that the findings can be applied beyond the olfactory system to other neural systems, and perhaps even be used in other biological systems.

"Across biology, from genetics to ecology, systems must simultaneously complete multiple functions. The solution we found in neuroscience can be applied to other systems to try to understand how they manage competing demands," Urban said.

Carnegie Mellon University


Related Neurons Current Events and Neurons News Articles


Hunting for the brain's opioid addiction switch
New research by Steven Laviolette's research team at Western University is contributing to a better understanding of the ways opiate-class drugs modify brain circuits to drive the addiction cycle.

Improving cell transplantation after spinal cord injury: When, where and how?
Spinal cord injuries are mostly caused by trauma, often incurred in road traffic or sporting incidents, often with devastating and irreversible consequences, and unfortunately having a relatively high prevalence (250,000 patients in the USA; 80% of cases are male).

Mapping neural networks to strengthen circadian rhythms
If you've ever felt groggy the morning after traversing time zones, you can thank the temporary mismatch between your body's 24-hour circadian rhythm and your new local time.

Researchers find what could be brain's trigger for binge behavior
Rats that responded to cues for sugar with the speed and excitement of binge-eaters were less motivated for the treat when certain neurons were suppressed, researchers discovered.

'Baby talk' can help songbirds learn their tunes
Adult songbirds modify their vocalizations when singing to juveniles in the same way that humans alter their speech when talking to babies.

Ancient anti-inflammatory drug salicylic acid has cancer-fighting properties
Scientists from the Gladstone Institutes have identified a new pathway by which salicylic acid--a key compound in the nonsteroidal anti-inflammatory drugs aspirin and diflunisal--stops inflammation and cancer.

The deadly toxin acrolein has a useful biological role
Scientists from RIKEN in Japan have discovered that acrolein--a toxic substance produced in cells during times of oxidative stress--in fact may play a role in preventing the process of fibrillation, an abnormal clumping of peptides that has been associated with Alzheimer's disease and other neural diseases.

Ever-changing moods may be toxic to the brain of bipolar patients
Bipolar disorder (BD) is a severe and complex mental illness with a strong genetic component that affects 2% of the world population. The disorder is characterized by episodes of mania and depression that may alternate throughout life and usually first occur in the early 20s.

The brain clock that keeps memories ticking
Just as members of an orchestra need a conductor to stay on tempo, neurons in the brain need well-timed waves of activity to organize memories across time. In the hippocampus--the brain's memory center--temporal ordering of the neural code is important for building a mental map of where you've been, where you are, and where you are going.

Identification of the action mechanism of a protein impacting neural circuit development
Research by Dr. Shernaz Bamji, from the University of British Columbia, uncovers the mechanism of action of an enzyme called DHHC9 in the normal development and function of neural networks in the brain.
More Neurons Current Events and Neurons News Articles

The Neuron: Cell and Molecular Biology

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)


The third edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The first part of the book covers the properties of the many ion channels that shape the way a single neuron generates varied patterns of electrical activity, as well as the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The second part covers the biochemical pathways that are linked to the action of neurotransmitters and can alter the cellular properties of neurons or sensory cells that transduce information from the outside world into the electrical code used by neurons. The final section reviews our rapidly expanding knowledge of the molecular factors that induce an...

From Neuron to Brain, Fifth Edition

From Neuron to Brain, Fifth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Paul A. Fuchs (Author), David A. Brown (Author), Mathew E. Diamond (Author), David Weisblat (Author)


The entirely rewritten Fifth Editionof From Neuron to Brain describes how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. This exciting new edition begins with the anatomy and physiology of the visual system.

Neuron Galaxy

Neuron Galaxy
by Karen Littman (Author), Jay Leibold (Author), Max Weinberg (Illustrator), Christine Gralapp (Illustrator)


Neuron Galaxy is a story about a lonely little neuron that wants to connect with other neurons. The book will help children to understand the basic function of the brain and appreciate what a wonderful, amazing organ their own brain is -- one of the most remarkable things in the galaxy! Prominent neuroscientists vetted the text and have endorsed the book. The story makes a graphic connection between the stars in the sky and the cells in our brain. It leaves readers with a sense of awe and wonder for the human brain equal to our awe and wonder for the universe. “This wonderfully crafted beginner’s text on the brain, its neurons and its near magical abilities will help young readers and their parents learn about the body’s most valuable organ.” — Floyd Bloom, MD,...

Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition

Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
by Wulfram Gerstner (Author), Werner M. Kistler (Author), Richard Naud (Author), Liam Paninski (Author)


What happens in our brain when we make a decision? What triggers a neuron to send out a signal? What is the neural code? This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience. It covers classical topics, including the Hodgkin-Huxley equations and Hopfield model, as well as modern developments in the field such as Generalized Linear Models and decision theory. Concepts are introduced using clear step-by-step explanations suitable for readers with only a basic knowledge of differential equations and probabilities, and are richly illustrated by figures and worked-out examples. End-of-chapter summaries and classroom-tested exercises make the book ideal for courses or...

From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition

From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Bruce G. Wallace (Author), Paul A. Fuchs (Author)


In the 25 years since From Neuron to Brain was first published, the authors' aim has remained constant—to describe how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. The new Fourth Edition, while maintaining this focus, has been completely reformatted and updated. The emphasis, as before, is on experiments, and on the way they are carried out. Using a narrative approach, the authors follow a line from the original inception of a new idea to an account of research being done today. The wealth of new facts, techniques, and concepts, however, presented a challenge in keeping the book to a manageable size. Inevitably, the authors have had to delete descriptions of certain classical...

The Neuron: Cell and Molecular Biology

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)


The Fourth Edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The book begins with properties of the many newly discovered ion channels that have emerged through mapping of the genome. These channels shape the way a single neuron generates varied patterns of electrical activity. Covered next are the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The following section examines the biochemical pathways that are linked to the action of neurotransmitters and that can alter the cellular properties of neurons or sensory cells that transduce information from the outside world into the electrical code used by neurons. The final section reviews...

Neurons In Action 2: Tutorials and Simulations using NEURON

Neurons In Action 2: Tutorials and Simulations using NEURON
by John W. Moore (Author), Anne E. Stuart (Author)


Neurons in Action 2 is the second version of a unique CD-ROM-based learning tool that combines hyperlinked text with NEURON simulations of laboratory experiments in neurophysiology. Version 2 features nine new tutorials introducing new channel types, single-channel simulations, and a redesigned interface. Neurons in Action s moving graphs provide insight into nerve function that is simply not possible with conventional, static text and figure presentations. Students discover how changing parameters such a neuronal geometry, ion concentrations, ion channel densities, and degree of myelination affects the generation of action potentials, synaptic potentials, and the spread or propagation of voltages within a neuron. For instructors, minimovies of NEURON simulations are provided for use in...

From Neurons to Neighborhoods : The Science of Early Childhood Development

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)


How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media.

How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues.

The committee issues a series of challenges to decision makers regarding...

Quantum Metaphysics: Consciousness, Spacetime, Life, Your Reality, and the Mysteries of the Universe Explained

Quantum Metaphysics: Consciousness, Spacetime, Life, Your Reality, and the Mysteries of the Universe Explained


Quantum Metaphysics (QuMe) is a fundamental understanding of life, existence, and the universe. It is based on a simple equation that can be easily understood by anyone and has wide-ranging applications far beyond physics.

This book is organized into three parts:

Part 1 covers the basics of QuMe, from the true nature of reality to perspective. It also details and explains the core 'God Equation' used throughout the book.

Part 2 is about happiness, consciousness, finding balance in life, how to become wealthy using QuMe, and what it means to be human.

Part 3 explains how just about everything you know about the universe – time, space, energy, matter, gravity and more – is wrong. And why.

The Neuron and the Mind: Microneuronal Theory and Practice in Cognitive Neuroscience

The Neuron and the Mind: Microneuronal Theory and Practice in Cognitive Neuroscience
by William R. Uttal (Author)


This book, a companion to William R. Uttal’s earlier work on macrotheories theories of mind-brain relationships, reviews another set of theories―those based on microneuronal measurements. Microneural theories maintain the integrity of individual neurons either in isolation or as participants in the great neuronal networks that make up the physical brain. Despite an almost universal acceptance by cognitive neuroscientists that the intangible mind must, in some way, be encoded by network states, Uttal shows that the problem of how the transformation occurs is not yet supported by empirical research findings at the micro as well as at the macro levels of analysis. Theories of the neuronal network survive more as metaphors than as robust explanations. This book also places special...

© 2016 BrightSurf.com