Science Current Events | Science News | Brightsurf.com
 

'Can you hear me now?' Researchers detail how neurons decide how to transmit information

March 28, 2011
PITTSBURGH-There are billions of neurons in the brain and at any given time tens of thousands of these neurons might be trying to send signals to one another. Much like a person trying to be heard by his friend across a crowded room, neurons must figure out the best way to get their message heard above the din.

Researchers from the Center for the Neural Basis of Cognition, a joint program between Carnegie Mellon University and the University of Pittsburgh, have found two ways that neurons accomplish this, establishing a fundamental mechanism by which neurons communicate. The findings have been published in an online early edition of Proceedings of the National Academy of Sciences (PNAS).

"Neurons face a universal communications conundrum. They can speak together and be heard far and wide, or they can speak individually and say more. Both are important. We wanted to find out how neurons choose between these strategies," said Nathan Urban, the Dr. Frederick A. Schwertz Distinguish Professor of Life Sciences and head of the Department of Biological Sciences at CMU.

Neurons communicate by sending out electrical impulses called action potentials or "spikes." These spikes code information much like a version of Morse code with only dots and no dashes. Groups of neurons can choose to communicate information in one of two ways: by spiking simultaneously or by spiking separately.

To find out how the brain decided which method to use to process a sensory input, the researchers looked at mitral cell neurons in the brain's olfactory bulb - the part of the brain that sorts out smells and a common model for studying global information processing. Using slice electrophysiology and computer simulations, the researchers found that the brain had a clever strategy for ensuring that the neurons' message was being heard.

Over the short time scale of a few milliseconds, the brain engaged its inhibitory circuitry to make the neurons fire in synchrony. This simultaneous, correlated firing creates a loud, but simple, signal. The effect was much like a crowd at a sporting event chanting, "Let's go team!" Over short time intervals, individual neurons produced the same short message, increasing the effectiveness with which activity was transmitted to other brain areas. The researchers say that in both human and neuronal communication alike, this collective communication works well for simple messages, but not for longer or more complex messages that contain more intricate information.

The neurons studied used longer timescales (around one second) to convey these more complex concepts. Over longer time intervals, the inhibitory circuitry generated a form of competition between neurons, so that the more strongly activated neurons silenced the activity of weakly activated neurons, enhancing the differences in their firing rates and making their activity less correlated. Each neuron was able to communicate a different piece of information about the stimulus without being drowned out by the chatter of competing neurons. It would be like being in a group where each person spoke in turn. The room would be much quieter than a sports arena and the immediate audience would be able to listen and learn much more complex information.

Researchers believe that the findings can be applied beyond the olfactory system to other neural systems, and perhaps even be used in other biological systems.

"Across biology, from genetics to ecology, systems must simultaneously complete multiple functions. The solution we found in neuroscience can be applied to other systems to try to understand how they manage competing demands," Urban said.

Carnegie Mellon University


Related Neurons Current Events and Neurons News Articles


Naturally occurring protein fragment found in brain inhibits key enzyme implicated in Alzheimer's
For the first time, UCLA researchers have shown that a natural protein fragment produced in the brain can act as an inhibitor of a key enzyme implicated in the onset of Alzheimer's disease, a finding that could lead to the development of new drugs to treat the disease.

Research grasps how the brain plans gripping motion
With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object.

Coffee consumption habits impact the risk of mild cognitive impairment
Mild cognitive impairment (MCI) is considered a prodromal stage of Alzheimer's disease (AD) and dementia.

Brain disease scenarios revised by step-by-step imaging of toxic aggregation
Diseases like Alzheimer's are caused when proteins aggregate and clump together. In a world first, EPFL scientists have successfully distinguished between the disease-causing aggregation forms of proteins.

Researchers pinpoint where the brain unites our eyes' double vision
If you have two working eyes, you are live streaming two images of the world into your brain. Your brain combines the two to produce a view of the world that appears as though you had a single eye -- like the Cyclops from Greek mythology.

Simple flip of genetic switch determines aging or longevity in animals
When does aging really begin? Two Northwestern University scientists now have a molecular clue. In a study of the transparent roundworm C. elegans, they found that adult cells abruptly begin their downhill slide when an animal reaches reproductive maturity.

Overeating caused by a hormone deficiency in brain?
If you find yourself downing that extra piece of chocolate fudge cake even though you're not hungry, it might be the absence of a hormone in your brain that's causing you to overeat purely for pleasure.

Scientists identify schizophrenia's 'Rosetta Stone' gene
Scientists have identified a critical function of what they believe to be schizophrenia's "Rosetta Stone" gene that could hold the key to decoding the function of all genes involved in the disease.

Biomarkers in blood shown to be highly selective indicators of brain damage
Researchers have shown that the levels of two proteins present in blood and cerebrospinal fluid increase significantly at different time points following traumatic brain injury (TBI), confirming their potential value as biomarkers of trauma-related brain damage.

Specific protein as missing link for earliest known change in Alzheimer's pathology
A recent study conducted at Nathan S. Kline Institute for Psychiatric Research (NKI) and NYU Langone Medical Center implicates a new culprit in Alzheimer's disease development.
More Neurons Current Events and Neurons News Articles

From Neuron to Brain, Fifth Edition

From Neuron to Brain, Fifth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Paul A. Fuchs (Author), David A. Brown (Author), Mathew E. Diamond (Author), David Weisblat (Author)


The entirely rewritten Fifth Editionof From Neuron to Brain describes how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. This exciting new edition begins with the anatomy and physiology of the visual system.

The Neuron: Cell and Molecular Biology

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)


The third edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The first part of the book covers the properties of the many ion channels that shape the way a single neuron generates varied patterns of electrical activity, as well as the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The second part covers the biochemical pathways that are linked to the action of neurotransmitters and can alter the cellular properties of neurons or sensory cells that transduce information from the outside world into the electrical code used by neurons. The final section reviews our rapidly expanding knowledge of the molecular factors that induce an...

From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition

From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Bruce G. Wallace (Author), Paul A. Fuchs (Author)


In the 25 years since From Neuron to Brain was first published, the authors' aim has remained constant—to describe how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. The new Fourth Edition, while maintaining this focus, has been completely reformatted and updated. The emphasis, as before, is on experiments, and on the way they are carried out. Using a narrative approach, the authors follow a line from the original inception of a new idea to an account of research being done today. The wealth of new facts, techniques, and concepts, however, presented a challenge in keeping the book to a manageable size. Inevitably, the authors have had to delete descriptions of certain classical...

Molecular and Cellular Physiology of Neurons

Molecular and Cellular Physiology of Neurons
by Gordon L. Fain (Author)


If we are to understand the brain, we must understand how the individual molecules and cells of the nervous system function and ultimately contribute to our behavior. Molecular and Cellular Physiology of Neurons provides a comprehensive and up-to-date account of what we now know--and what we want to know and can reasonably expect to discover in the near future--about the functioning of the brain at the level of molecules and cells. Molecular and Cellular Physiology of Neurons takes readers from the fundamentals to the most sophisticated concepts and latest discoveries: from membrane potentials to recent experiments on voltage-gated ion channels, from descriptions of receptors, G proteins, effector molecules, and second messengers to an account of our current understanding of long-term...

The Neuron: Cell and Molecular Biology

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)


The Fourth Edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The book begins with properties of the many newly discovered ion channels that have emerged through mapping of the genome. These channels shape the way a single neuron generates varied patterns of electrical activity. Covered next are the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The following section examines the biochemical pathways that are linked to the action of neurotransmitters and that can alter the cellular properties of neurons or sensory cells that transduce information from the outside world into the electrical code used by neurons. The final section reviews...

Neurons In Action 2: Tutorials and Simulations using NEURON

Neurons In Action 2: Tutorials and Simulations using NEURON
by John W. Moore (Author), Anne E. Stuart (Author)


Neurons in Action 2 is the second version of a unique CD-ROM-based learning tool that combines hyperlinked text with NEURON simulations of laboratory experiments in neurophysiology. Version 2 features nine new tutorials introducing new channel types, single-channel simulations, and a redesigned interface. Neurons in Action s moving graphs provide insight into nerve function that is simply not possible with conventional, static text and figure presentations. Students discover how changing parameters such a neuronal geometry, ion concentrations, ion channel densities, and degree of myelination affects the generation of action potentials, synaptic potentials, and the spread or propagation of voltages within a neuron. For instructors, minimovies of NEURON simulations are provided for use in...

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by Gregory Hickok (Author)


An essential reconsideration of one of the most far-reaching theories in modern neuroscience and psychology. In 1992, a group of neuroscientists from Parma, Italy, reported a new class of brain cells discovered in the motor cortex of the macaque monkey. These cells, later dubbed mirror neurons, responded equally well during the monkey’s own motor actions, such as grabbing an object, and while the monkey watched someone else perform similar motor actions. Researchers speculated that the neurons allowed the monkey to understand others by simulating their actions in its own brain. Mirror neurons soon jumped species and took human neuroscience and psychology by storm. In the late 1990s theorists showed how the cells provided an elegantly simple new way to explain the evolution of language,...

From Neurons to Neighborhoods : The Science of Early Childhood Development

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)


How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of...

The Mirror Neuron System: A Special Issue of Social Neuroscience

The Mirror Neuron System: A Special Issue of Social Neuroscience
by Christian Keysers (Editor), Luciano Fadiga (Editor)


Mirror neurons are premotor neurons, originally discovered in the macaque brain , that discharge both during execution of goal-directed actions and during the observation of similar actions executed by another individual. They therefore ‘mirror’ others’ actions on the observer's motor repertoire. In the last decade an impressive amount of work has been devoted to the study of their properties and to investigate if they are present also in our species. Neuroimaging and electrophysiological techniques have shown that a mirror-neuron system does exist in the human brain as well. Among ‘mirror’ human areas, Broca’s area (the frontal area for speech production) is almost constantly activated by action observation. This suggests a possible evolutionary link between action...

I of the Vortex: From Neurons to Self

I of the Vortex: From Neurons to Self
by Rodolfo R. Llinas (Author)


In I of the Vortex, Rodolfo Llinas, a founding father of modern brain science, presents an original view of the evolution and nature of mind. According to Llinas, the "mindness state" evolved to allow predictive interactions between mobile creatures and their environment. He illustrates the early evolution of mind through a primitive animal called the "sea squirt." The mobile larval form has a brainlike ganglion that receives sensory information about the surrounding environment. As an adult, the sea squirt attaches itself to a stationary object and then digests most of its own brain. This suggests that the nervous system evolved to allow active movement in...

© 2015 BrightSurf.com