Science Current Events | Science News | Brightsurf.com
 

'Can you hear me now?' Researchers detail how neurons decide how to transmit information

March 28, 2011
PITTSBURGH-There are billions of neurons in the brain and at any given time tens of thousands of these neurons might be trying to send signals to one another. Much like a person trying to be heard by his friend across a crowded room, neurons must figure out the best way to get their message heard above the din.

Researchers from the Center for the Neural Basis of Cognition, a joint program between Carnegie Mellon University and the University of Pittsburgh, have found two ways that neurons accomplish this, establishing a fundamental mechanism by which neurons communicate. The findings have been published in an online early edition of Proceedings of the National Academy of Sciences (PNAS).

"Neurons face a universal communications conundrum. They can speak together and be heard far and wide, or they can speak individually and say more. Both are important. We wanted to find out how neurons choose between these strategies," said Nathan Urban, the Dr. Frederick A. Schwertz Distinguish Professor of Life Sciences and head of the Department of Biological Sciences at CMU.

Neurons communicate by sending out electrical impulses called action potentials or "spikes." These spikes code information much like a version of Morse code with only dots and no dashes. Groups of neurons can choose to communicate information in one of two ways: by spiking simultaneously or by spiking separately.

To find out how the brain decided which method to use to process a sensory input, the researchers looked at mitral cell neurons in the brain's olfactory bulb - the part of the brain that sorts out smells and a common model for studying global information processing. Using slice electrophysiology and computer simulations, the researchers found that the brain had a clever strategy for ensuring that the neurons' message was being heard.

Over the short time scale of a few milliseconds, the brain engaged its inhibitory circuitry to make the neurons fire in synchrony. This simultaneous, correlated firing creates a loud, but simple, signal. The effect was much like a crowd at a sporting event chanting, "Let's go team!" Over short time intervals, individual neurons produced the same short message, increasing the effectiveness with which activity was transmitted to other brain areas. The researchers say that in both human and neuronal communication alike, this collective communication works well for simple messages, but not for longer or more complex messages that contain more intricate information.

The neurons studied used longer timescales (around one second) to convey these more complex concepts. Over longer time intervals, the inhibitory circuitry generated a form of competition between neurons, so that the more strongly activated neurons silenced the activity of weakly activated neurons, enhancing the differences in their firing rates and making their activity less correlated. Each neuron was able to communicate a different piece of information about the stimulus without being drowned out by the chatter of competing neurons. It would be like being in a group where each person spoke in turn. The room would be much quieter than a sports arena and the immediate audience would be able to listen and learn much more complex information.

Researchers believe that the findings can be applied beyond the olfactory system to other neural systems, and perhaps even be used in other biological systems.

"Across biology, from genetics to ecology, systems must simultaneously complete multiple functions. The solution we found in neuroscience can be applied to other systems to try to understand how they manage competing demands," Urban said.

Carnegie Mellon University


Related Neurons Current Events and Neurons News Articles


Clinical trial shows intuitive control of robotic arm using thought
Paralyzed from the neck down after suffering a gunshot wound when he was 21, Erik G. Sorto now can move a robotic arm just by thinking about it and using his imagination.

Blood to feeling: McMaster scientists turn blood into neural cells
Scientists at McMaster University have discovered how to make adult sensory neurons from human patients simply by having them roll up their sleeve and providing a blood sample.

Switching off brain circuit renders mice 'out of touch' with environment
The sense of touch is important but often taken for granted in daily life because it seems simple and automatic. New research suggests that the apparent simplicity of tactile sensation comes from a clever two-stage brain circuit.

Douglas study on neurogenesis in the olfactory bulb
A new study published by the team of Naguib Mechawar, Ph.D., a researcher at the Douglas Institute (CIUSSS de l'Ouest-de-l'île-de-Montréal) and Associate Professor in the Department of Psychiatry at McGill University, suggests that the integration of new neurons in the adult brain is a phenomenon more generally compromised in the brains of depressed patients.

Human stem cell model reveals molecular cues critical to neurovascular unit formation
Crucial bodily functions we depend on but don't consciously think about -- things like heart rate, blood flow, breathing and digestion -- are regulated by the neurovascular unit.

Discovery of a treatment to block the progression of multiple sclerosis
A drug that could halt the progression of multiple sclerosis may soon be developed thanks to a discovery by a team at the CHUM Research Centre and the University of Montreal.

Researchers find brain area that integrates speech's rhythms
Duke and MIT scientists have discovered an area of the brain that is sensitive to the timing of speech, a crucial element of spoken language.

Nerve cells use each other as maps
When nerve cells form in an embryo they do not start off in the right place but have to be guided to their final position by navigating a kind of molecular and cellular "map" in order to function properly.

Chameleon proteins make individual cells visible
Researchers at ETH Zurich's Department of Biosystems Science and Engineering in Basel have developed a new microscopy technique that enables for the first time to selectively visualize individual cells within the complex, three-dimensional tissue of a living organism.

New techniques for reprogramming stem cells target neurological disease models
As scientists overcome the technical challenges in reprogramming stem cells to produce biologically precise models of human neurons, these emerging model systems will accelerate research on understanding neuronal activity, brain development, and neurological diseases, and will drive the discovery of new patient-specific, reprogramming-based therapies.
More Neurons Current Events and Neurons News Articles

The Neuron: Cell and Molecular Biology

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)


The third edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The first part of the book covers the properties of the many ion channels that shape the way a single neuron generates varied patterns of electrical activity, as well as the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The second part covers the biochemical pathways that are linked to the action of neurotransmitters and can alter the cellular properties of neurons or sensory cells that transduce information from the outside world into the electrical code used by neurons. The final section reviews our rapidly expanding knowledge of the molecular factors that induce an...

From Neuron to Brain, Fifth Edition

From Neuron to Brain, Fifth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Paul A. Fuchs (Author), David A. Brown (Author), Mathew E. Diamond (Author), David Weisblat (Author)


The entirely rewritten Fifth Editionof From Neuron to Brain describes how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. This exciting new edition begins with the anatomy and physiology of the visual system.

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by Gregory Hickok (Author)


An essential reconsideration of one of the most far-reaching theories in modern neuroscience and psychology. In 1992, a group of neuroscientists from Parma, Italy, reported a new class of brain cells discovered in the motor cortex of the macaque monkey. These cells, later dubbed mirror neurons, responded equally well during the monkey’s own motor actions, such as grabbing an object, and while the monkey watched someone else perform similar motor actions. Researchers speculated that the neurons allowed the monkey to understand others by simulating their actions in its own brain. Mirror neurons soon jumped species and took human neuroscience and psychology by storm. In the late 1990s theorists showed how the cells provided an elegantly simple new way to explain the evolution of language,...

The Book of Secrets: The Guide to  Unlocking Your  Subconscious Mind and Understanding Reality

The Book of Secrets: The Guide to Unlocking Your Subconscious Mind and Understanding Reality


"This book changed my life!" - R. D. Woodson
Exclusive to Amazon, The Book of Secrets offers a unique perspective on the nature of reality, life, human problems, and the universe. Importantly, it offers guidance on how you can apply this wisdom to everyday living. You are introduced to a powerful tool, called SPIR, representing the 4 fundamental forces of reality. The book also uncovers the secrets of:

• The physicality of dreams, and how they can become real
• How you can be more happy, no matter what situation you're in
• Why you are not nearly as human as you think
• What consciousness is, and why it matters
• The nature of space and time, and how it applies to peanut butter sandwiches
• A simple concept that can change...

A Celebration of Neurons: An Educator's Guide to the Human Brain

A Celebration of Neurons: An Educator's Guide to the Human Brain
by Robert Sylwester (Author)


Robert Sylwester offers educators an introduction to "the only mass of matter in the known universe that can contemplate itself," the human brain. We all know that the brain is where learning takes place, but how many of us understand the brain's basic workings and use that understanding in our work with students? How many of us keep up with new developments in brain research that might have implications for teaching and learning? How many of us can even identify the basic parts of the brain and when they mature? After reading this book, you'll be able to identify the basic parts of the brain. You'll also be able to discuss scientists' theories about how our brain functions, how it interacts with the outside environment, how it determines what's important, how it solves problems, how it...

Single Neuron Studies of the Human Brain: Probing Cognition

Single Neuron Studies of the Human Brain: Probing Cognition
by Itzhak Fried (Editor), Ueli Rutishauser (Editor), Moran Cerf (Editor), Gabriel Kreiman (Editor)


In the last decade, the synergistic interaction of neurosurgeons, engineers, and neuroscientists, combined with new technologies, has enabled scientists to study the awake, behaving human brain directly. These developments allow cognitive processes to be characterized at unprecedented resolution: single neuron activity. Direct observation of the human brain has already led to major insights into such aspects of brain function as perception, language, sleep, learning, memory, action, imagery, volition, and consciousness. In this volume, experts document the successes, challenges, and opportunity in an emerging field. The book presents methodological tutorials,...

From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition

From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Bruce G. Wallace (Author), Paul A. Fuchs (Author)


In the 25 years since From Neuron to Brain was first published, the authors' aim has remained constant—to describe how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. The new Fourth Edition, while maintaining this focus, has been completely reformatted and updated. The emphasis, as before, is on experiments, and on the way they are carried out. Using a narrative approach, the authors follow a line from the original inception of a new idea to an account of research being done today. The wealth of new facts, techniques, and concepts, however, presented a challenge in keeping the book to a manageable size. Inevitably, the authors have had to delete descriptions of certain classical...

The NEURON Book

The NEURON Book
by Nicholas T. Carnevale (Author), Michael L. Hines (Author)


Assuming no previous knowledge of computer programming or numerical methods, The NEURON Book provides practical advice on how to get the most out of the NEURON software program. Although written primarily for neuroscientists, teachers and students, readers with a background in the physical sciences or mathematics and some knowledge about brain cells and circuits, will also find it helpful. Covering details of NEURON's inner workings, and practical considerations specifying anatomical and biophysical properties to be represented in models, this book uses a problem-solving approach that includes many examples to challenge readers.

Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition

Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
by Wulfram Gerstner (Author), Werner M. Kistler (Author), Richard Naud (Author), Liam Paninski (Author)


What happens in our brain when we make a decision? What triggers a neuron to send out a signal? What is the neural code? This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience. It covers classical topics, including the Hodgkin-Huxley equations and Hopfield model, as well as modern developments in the field such as Generalized Linear Models and decision theory. Concepts are introduced using clear step-by-step explanations suitable for readers with only a basic knowledge of differential equations and probabilities, and are richly illustrated by figures and worked-out examples. End-of-chapter summaries and classroom-tested exercises make the book ideal for courses or...

Neurons In Action 2: Tutorials and Simulations using NEURON

Neurons In Action 2: Tutorials and Simulations using NEURON
by John W. Moore (Author), Anne E. Stuart (Author)


Neurons in Action 2 is the second version of a unique CD-ROM-based learning tool that combines hyperlinked text with NEURON simulations of laboratory experiments in neurophysiology. Version 2 features nine new tutorials introducing new channel types, single-channel simulations, and a redesigned interface. Neurons in Action s moving graphs provide insight into nerve function that is simply not possible with conventional, static text and figure presentations. Students discover how changing parameters such a neuronal geometry, ion concentrations, ion channel densities, and degree of myelination affects the generation of action potentials, synaptic potentials, and the spread or propagation of voltages within a neuron. For instructors, minimovies of NEURON simulations are provided for use in...

© 2015 BrightSurf.com