Science Current Events | Science News | Brightsurf.com
 

'Can you hear me now?' Researchers detail how neurons decide how to transmit information

March 28, 2011

PITTSBURGH-There are billions of neurons in the brain and at any given time tens of thousands of these neurons might be trying to send signals to one another. Much like a person trying to be heard by his friend across a crowded room, neurons must figure out the best way to get their message heard above the din.

Researchers from the Center for the Neural Basis of Cognition, a joint program between Carnegie Mellon University and the University of Pittsburgh, have found two ways that neurons accomplish this, establishing a fundamental mechanism by which neurons communicate. The findings have been published in an online early edition of Proceedings of the National Academy of Sciences (PNAS).

"Neurons face a universal communications conundrum. They can speak together and be heard far and wide, or they can speak individually and say more. Both are important. We wanted to find out how neurons choose between these strategies," said Nathan Urban, the Dr. Frederick A. Schwertz Distinguish Professor of Life Sciences and head of the Department of Biological Sciences at CMU.

Neurons communicate by sending out electrical impulses called action potentials or "spikes." These spikes code information much like a version of Morse code with only dots and no dashes. Groups of neurons can choose to communicate information in one of two ways: by spiking simultaneously or by spiking separately.

To find out how the brain decided which method to use to process a sensory input, the researchers looked at mitral cell neurons in the brain's olfactory bulb - the part of the brain that sorts out smells and a common model for studying global information processing. Using slice electrophysiology and computer simulations, the researchers found that the brain had a clever strategy for ensuring that the neurons' message was being heard.

Over the short time scale of a few milliseconds, the brain engaged its inhibitory circuitry to make the neurons fire in synchrony. This simultaneous, correlated firing creates a loud, but simple, signal. The effect was much like a crowd at a sporting event chanting, "Let's go team!" Over short time intervals, individual neurons produced the same short message, increasing the effectiveness with which activity was transmitted to other brain areas. The researchers say that in both human and neuronal communication alike, this collective communication works well for simple messages, but not for longer or more complex messages that contain more intricate information.

The neurons studied used longer timescales (around one second) to convey these more complex concepts. Over longer time intervals, the inhibitory circuitry generated a form of competition between neurons, so that the more strongly activated neurons silenced the activity of weakly activated neurons, enhancing the differences in their firing rates and making their activity less correlated. Each neuron was able to communicate a different piece of information about the stimulus without being drowned out by the chatter of competing neurons. It would be like being in a group where each person spoke in turn. The room would be much quieter than a sports arena and the immediate audience would be able to listen and learn much more complex information.

Researchers believe that the findings can be applied beyond the olfactory system to other neural systems, and perhaps even be used in other biological systems.

"Across biology, from genetics to ecology, systems must simultaneously complete multiple functions. The solution we found in neuroscience can be applied to other systems to try to understand how they manage competing demands," Urban said.

Carnegie Mellon University


Related Neurons Current Events and Neurons News Articles


Hunting for the brain's opioid addiction switch
New research by Steven Laviolette's research team at Western University is contributing to a better understanding of the ways opiate-class drugs modify brain circuits to drive the addiction cycle.

Improving cell transplantation after spinal cord injury: When, where and how?
Spinal cord injuries are mostly caused by trauma, often incurred in road traffic or sporting incidents, often with devastating and irreversible consequences, and unfortunately having a relatively high prevalence (250,000 patients in the USA; 80% of cases are male).

Mapping neural networks to strengthen circadian rhythms
If you've ever felt groggy the morning after traversing time zones, you can thank the temporary mismatch between your body's 24-hour circadian rhythm and your new local time.

Researchers find what could be brain's trigger for binge behavior
Rats that responded to cues for sugar with the speed and excitement of binge-eaters were less motivated for the treat when certain neurons were suppressed, researchers discovered.

'Baby talk' can help songbirds learn their tunes
Adult songbirds modify their vocalizations when singing to juveniles in the same way that humans alter their speech when talking to babies.

Ancient anti-inflammatory drug salicylic acid has cancer-fighting properties
Scientists from the Gladstone Institutes have identified a new pathway by which salicylic acid--a key compound in the nonsteroidal anti-inflammatory drugs aspirin and diflunisal--stops inflammation and cancer.

The deadly toxin acrolein has a useful biological role
Scientists from RIKEN in Japan have discovered that acrolein--a toxic substance produced in cells during times of oxidative stress--in fact may play a role in preventing the process of fibrillation, an abnormal clumping of peptides that has been associated with Alzheimer's disease and other neural diseases.

Ever-changing moods may be toxic to the brain of bipolar patients
Bipolar disorder (BD) is a severe and complex mental illness with a strong genetic component that affects 2% of the world population. The disorder is characterized by episodes of mania and depression that may alternate throughout life and usually first occur in the early 20s.

The brain clock that keeps memories ticking
Just as members of an orchestra need a conductor to stay on tempo, neurons in the brain need well-timed waves of activity to organize memories across time. In the hippocampus--the brain's memory center--temporal ordering of the neural code is important for building a mental map of where you've been, where you are, and where you are going.

Identification of the action mechanism of a protein impacting neural circuit development
Research by Dr. Shernaz Bamji, from the University of British Columbia, uncovers the mechanism of action of an enzyme called DHHC9 in the normal development and function of neural networks in the brain.
More Neurons Current Events and Neurons News Articles

From Neuron to Brain

From Neuron to Brain
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)


From Neuron to Brain, Fifth Edition, provides a readable, up-to-date book for use in undergraduate, graduate, and medical school courses in neuroscience. As in previous editions, the emphasis is on experiments made by electrical recordings, molecular and cellular biological techniques, and behavioral studies on the nervous system, from simple reflexes to cognitive functions. Lines of research are followed from the inception of an idea to new findings being made in laboratories and clinics today.

A major change is that this edition begins with the anatomy and physiology of the visual system, from light receptors in the retina to the perception of images. This allows the reader to appreciate right away how nerve cells act as the building blocks for perception. Detailed mechanisms of...

Neurons In Action 2: Tutorials and Simulations using NEURON

Neurons In Action 2: Tutorials and Simulations using NEURON
by John W. Moore (Author), Anne E. Stuart (Author)


Neurons in Action 2 is the second version of a unique CD-ROM-based learning tool that combines hyperlinked text with NEURON simulations of laboratory experiments in neurophysiology. Version 2 features nine new tutorials introducing new channel types, single-channel simulations, and a redesigned interface. Neurons in Action s moving graphs provide insight into nerve function that is simply not possible with conventional, static text and figure presentations. Students discover how changing parameters such a neuronal geometry, ion concentrations, ion channel densities, and degree of myelination affects the generation of action potentials, synaptic potentials, and the spread or propagation of voltages within a neuron. For instructors, minimovies of NEURON simulations are provided for use in...

The NEURON Book

The NEURON Book
by Nicholas T. Carnevale (Author), Michael L. Hines (Author)


Assuming no previous knowledge of computer programming or numerical methods, The NEURON Book provides practical advice on how to get the most out of the NEURON software program. Although written primarily for neuroscientists, teachers and students, readers with a background in the physical sciences or mathematics and some knowledge about brain cells and circuits, will also find it helpful. Covering details of NEURON's inner workings, and practical considerations specifying anatomical and biophysical properties to be represented in models, this book uses a problem-solving approach that includes many examples to challenge readers.

From Photon to Neuron: Light, Imaging, Vision

From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)


A richly illustrated undergraduate textbook on the physics and biology of lightStudents in the physical and life sciences, and in engineering, need to know about the physics and biology of light. Recently, it has become increasingly clear that an understanding of the quantum nature of light is essential, both for the latest imaging technologies and to advance our knowledge of fundamental life processes, such as photosynthesis and human vision. From Photon to Neuron provides undergraduates with an accessible introduction to the physics of light and offers a unified view of a broad range of optical and biological phenomena. Along the way, this richly illustrated textbook builds the necessary background in neuroscience, photochemistry, and other disciplines, with applications to...

From Neurons to Neighborhoods : The Science of Early Childhood Development

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)


How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media.

How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues.

The committee issues a series of challenges to decision makers regarding...

I of the Vortex: From Neurons to Self

I of the Vortex: From Neurons to Self
by Rodolfo R. Llinas (Author)


In I of the Vortex, Rodolfo Llinas, a founding father of modern brain science, presents an original view of the evolution and nature of mind. According to Llinas, the "mindness state" evolved to allow predictive interactions between mobile creatures and their environment. He illustrates the early evolution of mind through a primitive animal called the "sea squirt." The mobile larval form has a brainlike ganglion that receives sensory information about the surrounding environment. As an adult, the sea squirt attaches itself to a stationary object and then digests most of its own brain. This suggests that the nervous system evolved to allow active movement in animals. To move through the environment safely, a creature must anticipate the outcome of each movement on the basis of incoming...

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by Gregory Hickok (Author)


An essential reconsideration of one of the most far-reaching theories in modern neuroscience and psychology. In 1992, a group of neuroscientists from Parma, Italy, reported a new class of brain cells discovered in the motor cortex of the macaque monkey. These cells, later dubbed mirror neurons, responded equally well during the monkey’s own motor actions, such as grabbing an object, and while the monkey watched someone else perform similar motor actions. Researchers speculated that the neurons allowed the monkey to understand others by simulating their actions in its own brain. Mirror neurons soon jumped species and took human neuroscience and psychology by storm. In the late 1990s theorists showed how the cells provided an elegantly simple new way to explain the evolution of language,...

The 8 Keys of Logia: How to Regain Control of Your Reality in a Time of Chaos and Insanity

The 8 Keys of Logia: How to Regain Control of Your Reality in a Time of Chaos and Insanity


This book explores the practical application of Quantum Metaphysics in everyday life in eight steps, helping to create a more balanced and harmonious reality today and in the years to come.

Quantum Metaphysics is a new theory that offers an explanation for all phenomena in the universe and in your life, from gravity to social interactions to time and space to eating a sandwich on a park bench. It illustrates how perspective itself works on the quantum level.

Logia is the application of Quantum Metaphysics in one's life. This book will explain how you can use its core principles to take control of your reality, and is designed to be understood on its own without having any knowledge of Quantum Metaphysics.


The Neuron: Cell and Molecular Biology

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)


The Fourth Edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The book begins with properties of the many newly discovered ion channels that have emerged through mapping of the genome. These channels shape the way a single neuron generates varied patterns of electrical activity. Covered next are the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The following section examines the biochemical pathways that are linked to the action of neurotransmitters and that can alter the cellular properties of neurons or sensory cells that transduce information from the outside world into the electrical code used by neurons. The final section reviews...

Dawn of the Neuron: The Early Struggles to Trace the Origin of Nervous Systems

Dawn of the Neuron: The Early Struggles to Trace the Origin of Nervous Systems
by Michel Anctil (Author)


In science, sometimes it is best to keep things simple. Initially discrediting the discovery of neurons in jellyfish, mid-nineteenth-century scientists grouped jellyfish, comb-jellies, hydra, and sea anemones together under one term - "coelenterates" - and deemed these animals too similar to plants to warrant a nervous system. In Dawn of the Neuron, Michel Anctil shows how Darwin's theory of evolution completely eradicated this idea and cleared the way for the modern study of the neuron. Once zoologists accepted the notion that varying levels of animal complexity could evolve, they began to use simple-structured creatures such as coelenterates and sponges to understand the building blocks of more complicated nervous systems. Dawn of the Neuron provides fascinating insights into the...

© 2017 BrightSurf.com