Science Current Events | Science News | Brightsurf.com
 

With a simple coating, nanowires show a dramatic increase in efficiency and sensitivity

July 07, 2011
By applying a coating to individual silicon nanowires, researchers at Harvard and Berkeley have significantly improved the materials' efficiency and sensitivity.

The findings, published in the May 20, 2011, issue of Nano Letters, suggest that the coated wires hold promise for photodetectors and energy harvesting technologies like solar cells.

Due to a large surface-to-volume ratio, nanowires typically suffer from a high surface recombination rate, meaning that photogenerated charges recombine rather than being collected at the terminals. The carrier lifetime of a basic nanowire is shortened by four to five orders of magnitude, reducing the material's efficiency in applications like solar cells to a few percent.

"Nanowires have the potential to offer high energy conversion at low cost, yet their limited efficiency has held them back," says Kenneth Crozier, Associate Professor of Electrical Engineering at the Harvard School of Engineering and Applied Sciences (SEAS).

With their latest work, Crozier and his colleagues demonstrated what could be promising solution. Making fine-precision measurements on single nanowires coated with an amorphous silicon layer, the team showed a dramatic reduction in the surface recombination.

Surface passivation has long been used to promote efficiency in silicon chips. Until now, surface passivation of nanowires has been explored far less.

The creation of the coating that passivated the surfaces of the nanowires was a happy accident. During preparation of a batch of single-crystal silicon nanowires, the scientists conjecture, the small gold particles used to grow the nanowires became depleted. As a result, they think, the amorphous silicon coating was simply deposited onto the individual wires.

Instead of abandoning the batch, Crozier and his team decided to test it. Scanning photocurrent studies indicated, astoundingly, almost a hundred-fold reduction in surface recombination. Overall, the coated wires boasted a 90-fold increase in photosensitivity compared to uncoated ones.

Co-author Yaping Dan, a postdoctoral fellow in Crozier's lab who spearheaded the experiments, suggests that the reason for the increased efficiency is that the coating physically extends the broken atom bonds at the single-crystalline silicon surface. At the same time, the coating also may form a high-electric potential barrier at the interface, which confines the photogenerated charge carriers inside the single-crystalline silicon.

"As far as we know, scientists have not done these types of precision measurements of surface passivation at the level of single nanowires," says Crozier. "Simply by putting a thin layer of amorphous silicon onto a crystalline silicon nanowire reduces the surface recombination nearly two orders of magnitude. We think the work will address some of the disadvantages of nanowires but keep their advantages."

Due to their increased carrier lifetime, the researchers expect that their wires will offer higher energy conversion efficiency when used in solar cell devices.

###

Crozier and Dan's co-authors included Kwanyong Seo and Jhim H. Meza, both of SEAS, and Kuniharu Takei and Ali Javey at the University of California at Berkeley. The authors acknowledge the support of Zena Technologies. Fabrication work was carried out at the Center for Nanoscale Systems at Harvard (which is supported by the National Science Foundation).

Harvard University


Related Nanowires Current Events and Nanowires News Articles


Imaging electric charge propagating along microbial nanowires
The claim by UMass Amherst researchers that the microbe Geobacter produces tiny electrical wires has been mired in controversy for a decade, but a new collaborative study provides stronger evidence than ever to support their claims.

Solar cell compound probed under pressure
Gallium arsenide, GaAs, a semiconductor composed of gallium and arsenic is well known to have physical properties that promise practical applications.

Recruiting bacteria to be technology innovation partners
For most people biofilms conjure up images of slippery stones in a streambed and dirty drains.

Angling chromium to let oxygen through
Researchers have been trying to increase the efficiency of solid oxide fuel cells by lowering the temperatures at which they run.

New method to detect prize particle for future quantum computing
Quantum computing relies on the laws of quantum mechanics to process vast amounts of information and calculations simultaneously, with far more power than current computers.

Ultrasensitive Biosensor from Molybdenite Semiconductor Outshines Graphene
UC Santa Barbara researchers demonstrate atomically thin, ultrasensitive and scalable molybdenum disulfide field-effect transistor based biosensors and establish their potential for single-molecule detection

Ultrasensitive Biosensor from Molybdenite Semiconductor Outshines Graphene
Move over, graphene. An atomically thin, two-dimensional, ultrasensitive semiconductor material for biosensing developed by researchers at UC Santa Barbara promises to push the boundaries of biosensing technology in many fields, from health care to environmental protection to forensic industries.

On the frontiers of cyborg science
No longer just fantastical fodder for sci-fi buffs, cyborg technology is bringing us tangible progress toward real-life electronic skin, prosthetics and ultraflexible circuits.

A Crystal Wedding in the Nanocosmos
Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor crystals into a silicon nanowire. With this new method of producing hybrid nanowires, very fast and multi-functional processing units can be accommodated on a single chip in the future.

NUS scientists use low cost technique to improve properties and functions of nanomaterials
The challenges faced by researchers in modifying properties of nanomaterials for application in devices may be addressed by a simple technique, thanks to recent innovative studies conducted by scientists from the National University of Singapore (NUS).
More Nanowires Current Events and Nanowires News Articles

Nanoelectronics: Nanowires, Molecular Electronics, and Nanodevices

Nanoelectronics: Nanowires, Molecular Electronics, and Nanodevices
by Krzysztof Iniewski (Author)


The latest advances in nanoelectronics This definitive volume addresses the state of the art in nanoelectronics, covering nanowires, molecular electronics, and nanodevices. Written by global experts in the field, Nanoelectronics discusses cutting-edge techniques and emerging materials, such as carbon nanotubes and quantum dots. This pioneering work offers a comprehensive survey of nanofabrication options for use in next-generation technologies. Nanoelectronics covers: Electrical properties of metallic nanowires Electromigration defect nucleation in damascene copper interconnect lines Carbon nanotube interconnects in CMOS integrated circuits Printed organic electronics One-dimensional nanostructure-enabled chemical sensing Cross-section fabrication and analysis of nanoscale device...

Nanowires and Nanobelts: Materials, Properties and Devices. Volume 1: Metal and Semiconductor Nanowires

Nanowires and Nanobelts: Materials, Properties and Devices. Volume 1: Metal and Semiconductor Nanowires
by Zhong Lin Wang (Editor)


Nanowires, nanobelts, nanoribbons, nanorods . . . , are a new class of quasi-one­ dimensional materials that have been attracting a great research interest in the last few years. These non-carbon based materials have been demonstrated to exhibit superior electrical, optical, mechanical and thermal properties, and can be used as fundamen­ tal building blocks for nano-scale science and technology, ranging from chemical and biological sensors, field effect transistors to logic circuits. Nanocircuits built using semiconductor nanowires demonstrated were declared a "breakthrough in science" by Science magazine in 2001. Nature magazine recently published a report claiming that "Nanowires, nanorods, nanowhiskers, it does not matter what you call them, they are the hottest property in...

Nanosensors for Chemical and Biological Applications: Sensing with Nanotubes, Nanowires and Nanoparticles (Woodhead Publishing Series in Electronic and Optical Materials)

Nanosensors for Chemical and Biological Applications: Sensing with Nanotubes, Nanowires and Nanoparticles (Woodhead Publishing Series in Electronic and Optical Materials)
by Kevin C. Honeychurch (Editor)


Nano-scale materials are proving attractive for a new generation of devices, due to their unique properties. They are used to create fast-responding sensors with good sensitivity and selectivity for the detection of chemical species and biological agents. Nanosensors for Chemical and Biological Applications provides an overview of developments brought about by the application of nanotechnology for both chemical and biological sensor development. Part one addresses electrochemical nanosensors and their applications for enhanced biomedical sensing, including blood glucose and trace metal ion analysis. Part two goes on to discuss spectrographic nanosensors, with chapters on the use of nanoparticle sensors for biochemical and environmental sensing and other techniques for detecting...

Nanowires - Synthesis, Properties, Assembly and Applications: Volume 1144 (MRS Proceedings)

Nanowires - Synthesis, Properties, Assembly and Applications: Volume 1144 (MRS Proceedings)
by Yi Cui (Editor), Lincoln Lauhon (Editor), A. Alec Talin (Editor), E. P. A. M. Bakkers (Editor)


Given the interest, fascination, and rapid development in the field of nanowires, this book offers a well-timed overview of critical issues related to nanowires, as well as recent progress in synthesis, structure, properties and devices. Topics include: synthesis, with control over composition, size, shape, position, geometry, doping, alloying, and heterostructures; properties - mechanical, electronic, optical, thermal, magnetic, ionic, phase transformational, and chemical; assembly and integration - methods for organizing nanowires, multiple length scale pattern formation, heterogeneous integration, and assembly architecture; and applications - functional devices and systems for electronics, photonics, sensors, and renewable energy.

One-Dimensional Superconductivity in Nanowires

One-Dimensional Superconductivity in Nanowires
by Fabio Altomare (Author), Albert M. Chang (Author)


The book introduces scientists and graduate students to superconductivity, and highlights the differences arising from the different dimensionality of the sample under study. It focuses on transport in one-dimensional superconductors, describing relevant theories with particular emphasis on experimental results. It closely relates these results to the emergence of various novel fabrication techniques. The book closes by discussing future perspectives, and the connection and relevance to other physical systems, including superfluidity, Bose-Einstein condensates, and possibly cosmic strings.

  Semiconductor Nanowires: From Next-Generation Electronics to Sustainable Energy (RSC Smart Materials)
by Wei Lu (Editor), Jie Xiang (Editor), Jie Xiang (Editor), Hans-Jörg Schneider (Editor), Mohsen Shahinpoor (Editor), Charles Lieber (Editor), Peidong Yang (Editor), Yi Cui (Editor), Ritesh Agarwal (Editor), Song Jin (Editor), Bozhi Tian (Editor), Renkun Chen (Editor), Deli Wang (Editor)


Semiconductor nanowires were initially discovered in late 90’s and since then there has been an explosion in the research of their synthesis and understanding of their structures, growth mechanisms and properties. The realisation of their unique electrical, optical and mechanical properties has led to a great interest for their use in electronics, energy generation and storage. This book provides a timely reference on semiconductor nanowires including an introduction to their synthesis and properties and specific chapters focusing on the different applications including photovoltaics, nanogenerators, transistors, biosensors and photonics. This is the first book dedicated to Semiconductor Nanowires and provides an invaluable resource for researchers already working in the area as well as...

  Semiconductor Nanowires and Nanoribbons
by Xiangfeng Duan (Author)


With contributions from leading researchers in academia and industry, blending important concepts from physics, chemistry, materials science, and electrical engineering, Semiconductor Nanowires and Nanoribbons gives a detailed overview of key physical, chemical, and engineering principles of semiconductor nanowire structures. It provides a comprehensive account of the current status, technical challenges, and future potential of these nanostructures. The book is divided into two parts: Part 1 covers various strategies for the growth of 1D nanostructures and includes the hierarchical assembly of nanowires into increasingly complex networks and superstructures; Part 2 focuses on various aspects of physical properties and potential applications.

Semiconducting Silicon Nanowires for Biomedical Applications (Woodhead Publishing Series in Biomaterials)

Semiconducting Silicon Nanowires for Biomedical Applications (Woodhead Publishing Series in Biomaterials)
by J.L. Coffer (Editor)


Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffolds, mediated differentiation of stem cells, and silicon nanoneedles for drug delivery. Finally, it highlights the use of silicon nanowires for detection and sensing. These chapters explore the...

Silicon and Silicide Nanowires: Applications, Fabrication, and Properties

Silicon and Silicide Nanowires: Applications, Fabrication, and Properties
by Yu Huang (Editor), King-Ning Tu (Editor)


Nanoscale materials are showing great promise in various electronic, optoelectronic, and energy applications. Silicon (Si) has especially captured great attention as the leading material for microelectronic and nanoscale device applications. Recently, various silicides have garnered special attention for their pivotal role in Si device engineering and for the vast potential they possess in fields such as thermoelectricity and magnetism. The fundamental understanding of Si and silicide material processes at nanoscale plays a key role in achieving device structures and performance that meet real-world requirements and, therefore, demands investigation and exploration of nanoscale device applications. This book comprises the theoretical and experimental analysis of various properties of...

Handbook of Nanophysics: Nanotubes and Nanowires

Handbook of Nanophysics: Nanotubes and Nanowires
by Klaus D. Sattler (Editor)


Intensive research on fullerenes, nanoparticles, and quantum dots in the 1990s led to interest in nanotubes and nanowires in subsequent years. Handbook of Nanophysics: Nanotubes and Nanowires focuses on the fundamental physics and latest applications of these important nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume first covers key aspects of carbon nanotubes, including quantum and electron transport, isotope engineering, and fluid flow, before exploring inorganic nanotubes, such as spinel oxide nanotubes, magnetic nanotubes, and self-assembled peptide nanostructures. It then focuses on...

© 2014 BrightSurf.com