Science Current Events | Science News |

With a simple coating, nanowires show a dramatic increase in efficiency and sensitivity

July 07, 2011
By applying a coating to individual silicon nanowires, researchers at Harvard and Berkeley have significantly improved the materials' efficiency and sensitivity.

The findings, published in the May 20, 2011, issue of Nano Letters, suggest that the coated wires hold promise for photodetectors and energy harvesting technologies like solar cells.

Due to a large surface-to-volume ratio, nanowires typically suffer from a high surface recombination rate, meaning that photogenerated charges recombine rather than being collected at the terminals. The carrier lifetime of a basic nanowire is shortened by four to five orders of magnitude, reducing the material's efficiency in applications like solar cells to a few percent.

"Nanowires have the potential to offer high energy conversion at low cost, yet their limited efficiency has held them back," says Kenneth Crozier, Associate Professor of Electrical Engineering at the Harvard School of Engineering and Applied Sciences (SEAS).

With their latest work, Crozier and his colleagues demonstrated what could be promising solution. Making fine-precision measurements on single nanowires coated with an amorphous silicon layer, the team showed a dramatic reduction in the surface recombination.

Surface passivation has long been used to promote efficiency in silicon chips. Until now, surface passivation of nanowires has been explored far less.

The creation of the coating that passivated the surfaces of the nanowires was a happy accident. During preparation of a batch of single-crystal silicon nanowires, the scientists conjecture, the small gold particles used to grow the nanowires became depleted. As a result, they think, the amorphous silicon coating was simply deposited onto the individual wires.

Instead of abandoning the batch, Crozier and his team decided to test it. Scanning photocurrent studies indicated, astoundingly, almost a hundred-fold reduction in surface recombination. Overall, the coated wires boasted a 90-fold increase in photosensitivity compared to uncoated ones.

Co-author Yaping Dan, a postdoctoral fellow in Crozier's lab who spearheaded the experiments, suggests that the reason for the increased efficiency is that the coating physically extends the broken atom bonds at the single-crystalline silicon surface. At the same time, the coating also may form a high-electric potential barrier at the interface, which confines the photogenerated charge carriers inside the single-crystalline silicon.

"As far as we know, scientists have not done these types of precision measurements of surface passivation at the level of single nanowires," says Crozier. "Simply by putting a thin layer of amorphous silicon onto a crystalline silicon nanowire reduces the surface recombination nearly two orders of magnitude. We think the work will address some of the disadvantages of nanowires but keep their advantages."

Due to their increased carrier lifetime, the researchers expect that their wires will offer higher energy conversion efficiency when used in solar cell devices.


Crozier and Dan's co-authors included Kwanyong Seo and Jhim H. Meza, both of SEAS, and Kuniharu Takei and Ali Javey at the University of California at Berkeley. The authors acknowledge the support of Zena Technologies. Fabrication work was carried out at the Center for Nanoscale Systems at Harvard (which is supported by the National Science Foundation).

Harvard University

Related Nanowires Current Events and Nanowires News Articles

Nanowires could be the LEDs of the future
The latest research from the Niels Bohr Institute shows that LEDs made from nanowires will use less energy and provide better light.

Nanowire implants offer remote-controlled drug delivery
A team of researchers has created a new implantable drug-delivery system using nanowires that can be wirelessly controlled.

Futuristic components on silicon chips, fabricated successfully
A team of IBM researchers in Zurich, Switzerland with support from colleagues in Yorktown Heights, New York has developed a relatively simple, robust and versatile process for growing crystals made from compound semiconductor materials that will allow them be integrated onto silicon wafers.

Random nanowire configurations increase conductivity over heavily ordered configurations
Researchers at Lehigh University have identified for the first time that a performance gain in the electrical conductivity of random metal nanowire networks can be achieved by slightly restricting nanowire orientation.

Nano-policing pollution
Pollutants emitted by factories and car exhausts affect humans who breathe in these harmful gases and also aggravate climate change up in the atmosphere. Being able to detect such emissions is a critically needed measure.

Advances in molecular electronics: Lights on -- molecule on
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit.

Solution-grown nanowires make the best lasers
Take a material that is a focus of interest in the quest for advanced solar cells. Discover a "freshman chemistry level" technique for growing that material into high-efficiency, ultra-small lasers.

Water makes wires even more nano
Water is the key component in a Rice University process to reliably create patterns of metallic and semiconducting wires less than 10 nanometers wide.

Sharper nanoscopy
The 2014 chemistry Nobel Prize recognized important microscopy research that enabled greatly improved spatial resolution. This innovation, resulting in nanometer resolution, was made possible by making the source (the emitter) of the illumination quite small and by moving it quite close to the object being imaged.

Quantum computing: 1 step closer with defect-free logic gate
What does hair styling have in common with quantum computing? The braiding pattern has inspired scientists as a potential new approach to quantum calculation.
More Nanowires Current Events and Nanowires News Articles

Semiconductor Nanowires: From Next-Generation Electronics to Sustainable Energy (RSC Smart Materials)

Semiconductor Nanowires: From Next-Generation Electronics to Sustainable Energy (RSC Smart Materials)
by Wei Lu (Editor), Jie Xiang (Editor), Jie Xiang (Editor), Hans-Jorg Schneider (Editor), Mohsen Shahinpoor (Editor), Charles Lieber (Editor), Peidong Yang (Editor), Yi Cui (Editor), Ritesh Agarwal (Editor), Song Jin (Editor), Bozhi Tian (Editor), Renkun Chen (Editor), Deli Wang (Editor)

Semiconductor nanowires were initially discovered in late 90's and since then there has been an explosion in the research of their synthesis and understanding of their structures, growth mechanisms and properties. The realisation of their unique electrical, optical and mechanical properties has led to a great interest for their use in electronics, energy generation and storage. This book provides a timely reference on semiconductor nanowires including an introduction to their synthesis and properties and specific chapters focusing on the different applications including photovoltaics, nanogenerators, transistors, biosensors and photonics. This is the first book dedicated to Semiconductor Nanowires and provides an invaluable resource for researchers already working in the area as well as...

Nanowire Field Effect Transistors: Principles and Applications

Nanowire Field Effect Transistors: Principles and Applications
by Dae Mann Kim (Editor), Yoon-Ha Jeong (Editor)

“Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET.
During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and...

One-Dimensional Superconductivity in Nanowires

One-Dimensional Superconductivity in Nanowires
by Fabio Altomare (Author), Albert M. Chang (Author)

The book introduces scientists and graduate students to superconductivity, and highlights the differences arising from the different dimensionality of the sample under study. It focuses on transport in one-dimensional superconductors, describing relevant theories with particular emphasis on experimental results. It closely relates these results to the emergence of various novel fabrication techniques. The book closes by discussing future perspectives, and the connection and relevance to other physical systems, including superfluidity, Bose-Einstein condensates, and possibly cosmic strings.

Superconductivity in Nanowires: Fabrication and Quantum Transport

Superconductivity in Nanowires: Fabrication and Quantum Transport
by Alexey Bezryadin (Author)

The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine. One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so is the investigation and understanding of these properties in the first place. A promising approach is to use carbon nanotubes as well as DNA structures as templates. Many fundamental theoretical...

Inorganic Nanowires: Applications, Properties, and Characterization (Nanomaterials and their Applications)

Inorganic Nanowires: Applications, Properties, and Characterization (Nanomaterials and their Applications)
by M. Meyyappan (Author), Mahendra K. Sunkara (Author)

Advances in nanofabrication, characterization tools, and the drive to commercialize nanotechnology products have contributed to the significant increase in research on inorganic nanowires (INWs). Yet few if any books provide the necessary comprehensive and coherent account of this important evolution. Presenting essential information on both popular and emerging varieties, Inorganic Nanowires: Applications, Properties, and Characterization addresses the growth, characterization, and properties of nanowires. Author Meyyappan is the director and senior scientist at Ames Center for Nanotechnology and a renowned leader in nanoscience and technology, and Sunkara is also a major contributor to nanowire literature. Their cutting-edge work is the basis for much of the current understanding in...

Theoretical Modeling of Inorganic Nanostructures: Symmetry and ab-initio Calculations of Nanolayers, Nanotubes and Nanowires (NanoScience and Technology)

Theoretical Modeling of Inorganic Nanostructures: Symmetry and ab-initio Calculations of Nanolayers, Nanotubes and Nanowires (NanoScience and Technology)
by R.A. Evarestov (Author)

This book deals with the theoretical and computational simulation of monoperiodic nanostructures for different classes of inorganic substances. These simulations are related to their synthesis and experimental studies. A theoretical formalism is developed to describe 1D nanostructures with symmetric shapes and morphologies. Three types of models are considered for this aim: (i) nanotubes (rolled from 2D nanolayers and described within the formalism of line symmetry groups); (ii) nanoribbons (obtained from 2D nanolayers by their cutting along the chosen direction of translation); (iii) nanowires (obtained from 3D lattice by its sectioning along the crystalline planes parallel to the chosen direction of translation). Quantum chemistry ab-initio methods applied for LCAO calculations on...

Wide Band Gap Semiconductor Nanowires for Optical Devices (Electronic Engineering)

Wide Band Gap Semiconductor Nanowires for Optical Devices (Electronic Engineering)
by Vincent Consonni (Editor), Guy Feuillet (Editor)

This book, the second of two volumes, describes heterostructures and optoelectronic devices made from GaN and ZnO nanowires. Over the last decade, the number of publications on GaN and ZnO nanowires has grown exponentially, in particular for their potential optical applications in LEDs, lasers, UV detectors or solar cells. So far, such applications are still in their infancy, which we analyze as being mostly due to a lack of understanding and control of the growth of nanowires and related heterostructures. Furthermore, dealing with two different but related semiconductors such as ZnO and GaN, but also with different chemical and physical synthesis methods, will bring valuable comparisons in order to gain a general approach for the growth of wide band gap nanowires applied to optical...

Nanosensors for Chemical and Biological Applications: Sensing with Nanotubes, Nanowires and Nanoparticles (Woodhead Publishing Series in Electronic and Optical Materials)

Nanosensors for Chemical and Biological Applications: Sensing with Nanotubes, Nanowires and Nanoparticles (Woodhead Publishing Series in Electronic and Optical Materials)
by Kevin C. Honeychurch (Editor)

Nano-scale materials are proving attractive for a new generation of devices, due to their unique properties. They are used to create fast-responding sensors with good sensitivity and selectivity for the detection of chemical species and biological agents. Nanosensors for Chemical and Biological Applications provides an overview of developments brought about by the application of nanotechnology for both chemical and biological sensor development. Part one addresses electrochemical nanosensors and their applications for enhanced biomedical sensing, including blood glucose and trace metal ion analysis. Part two goes on to discuss spectrographic nanosensors, with chapters on the use of nanoparticle sensors for biochemical and environmental sensing and other techniques for detecting...

Silicon and Silicide Nanowires: Applications, Fabrication, and Properties

Silicon and Silicide Nanowires: Applications, Fabrication, and Properties
by Yu Huang (Editor), King-Ning Tu (Editor)

Nanoscale materials are showing great promise in various electronic, optoelectronic, and energy applications. Silicon (Si) has especially captured great attention as the leading material for microelectronic and nanoscale device applications. Recently, various silicides have garnered special attention for their pivotal role in Si device engineering and for the vast potential they possess in fields such as thermoelectricity and magnetism. The fundamental understanding of Si and silicide material processes at nanoscale plays a key role in achieving device structures and performance that meet real-world requirements and, therefore, demands investigation and exploration of nanoscale device applications. This book comprises the theoretical and experimental analysis of various properties of...

Nanotubes and Nanowires (Selected Topics in Electronics and Systems)

Nanotubes and Nanowires (Selected Topics in Electronics and Systems)
by Peter John Burke (Author), Peter John Burke (Editor)

The field of nanotubes and nanowires is evolving at a rapid pace, with many potential applications in electronics, optics, and sensors, to name a few. In this book, various prominent researchers summarize our current understanding of these new materials systems, as well as some of these potential applications. A snapshot of the state-of-the-art in the field of nanowires and nanotubes, the contributions give an instructive mix of experimental, theoretical, and visionary material to give the reader an indication of where the field is now, and where it is going.

© 2015