Science Current Events | Science News |

Wind-turbine placement produces tenfold power increase, Caltech researchers say

July 13, 2011

PASADENA, Calif.-The power output of wind farms can be increased by an order of magnitude-at least tenfold-simply by optimizing the placement of turbines on a given plot of land, say researchers at the California Institute of Technology (Caltech) who have been conducting a unique field study at an experimental two-acre wind farm in northern Los Angeles County.

A paper describing the findings-the results of field tests conducted by John Dabiri, Caltech professor of aeronautics and bioengineering, and colleagues during the summer of 2010-appears in the July issue of the Journal of Renewable and Sustainable Energy.

Dabiri's experimental farm, known as the Field Laboratory for Optimized Wind Energy (FLOWE), houses 24 10-meter-tall, 1.2-meter-wide vertical-axis wind turbines (VAWTs)-turbines that have vertical rotors and look like eggbeaters sticking out of the ground. Half a dozen turbines were used in the 2010 field tests.

Despite improvements in the design of wind turbines that have increased their efficiency, wind farms are rather inefficient, Dabiri notes. Modern farms generally employ horizontal-axis wind turbines (HAWTs)-the standard propeller-like monoliths that you might see slowly turning, all in the same direction, in the hills of Tehachapi Pass, north of Los Angeles.

In such farms, the individual turbines have to be spaced far apart-not just far enough that their giant blades don't touch. With this type of design, the wake generated by one turbine can interfere aerodynamically with neighboring turbines, with the result that "much of the wind energy that enters a wind farm is never tapped," says Dabiri. He compares modern farms to "sloppy eaters," wasting not just real estate (and thus lowering the power output of a given plot of land) but much of the energy resources they have available to them.

Designers compensate for the energy loss by making bigger blades and taller towers, to suck up more of the available wind and at heights where gusts are more powerful. "But this brings other challenges," Dabiri says, such as higher costs, more complex engineering problems, a larger environmental impact. Bigger, taller turbines, after all, mean more noise, more danger to birds and bats, and-for those who don't find the spinning spires visually appealing-an even larger eyesore.

The solution, says Dabiri, is to focus instead on the design of the wind farm itself, to maximize its energy-collecting efficiency at heights closer to the ground. While winds blow far less energetically at, say, 30 feet off the ground than at 100 feet, "the global wind power available 30 feet off the ground is greater than the world's electricity usage, several times over," he says. That means that enough energy can be obtained with smaller, cheaper, less environmentally intrusive turbines-as long as they're the right turbines, arranged in the right way.

VAWTs are ideal, Dabiri says, because they can be positioned very close to one another. This lets them capture nearly all of the energy of the blowing wind and even wind energy above the farm. Having every turbine turn in the opposite direction of its neighbors, the researchers found, also increases their efficiency, perhaps because the opposing spins decrease the drag on each turbine, allowing it to spin faster (Dabiri got the idea for using this type of constructive interference from his studies of schooling fish).

In the summer 2010 field tests, Dabiri and his colleagues measured the rotational speed and power generated by each of the six turbines when placed in a number of different configurations. One turbine was kept in a fixed position for every configuration; the others were on portable footings that allowed them to be shifted around.

The tests showed that an arrangement in which all of the turbines in an array were spaced four turbine diameters apart (roughly 5 meters, or approximately 16 feet) completely eliminated the aerodynamic interference between neighboring turbines. By comparison, removing the aerodynamic interference between propeller-style wind turbines would require spacing them about 20 diameters apart, which means a distance of more than one mile between the largest wind turbines now in use.

The six VAWTs generated from 21 to 47 watts of power per square meter of land area; a comparably sized HAWT farm generates just 2 to 3 watts per square meter.

"Dabiri's bioinspired engineering research is challenging the status quo in wind-energy technology," says Ares Rosakis, chair of Caltech's Division of Engineering and Applied Science and the Theodore von Kármán Professor of Aeronautics and professor of mechanical engineering. "This exemplifies how Caltech engineers' innovative approaches are tackling our society's greatest problems."

"We're on the right track, but this is by no means 'mission accomplished,'" Dabiri says. "The next steps are to scale up the field demonstration and to improve upon the off-the-shelf wind-turbine designs used for the pilot study." Still, he says, "I think these results are a compelling call for further research on alternatives to the wind-energy status quo."

This summer, Dabiri and colleagues are studying a larger array of 18 VAWTs to follow up last year's field study. Video and images of the field site can be found at

California Institute of Technology

Related Wind Turbines Current Events and Wind Turbines News Articles

Harnessing solar and wind energy in one device could power the 'Internet of Things'
The "Internet of Things" could make cities "smarter" by connecting an extensive network of tiny communications devices to make life more efficient.

Gone with the wind: Argonne coating shows surprising potential to improve reliability in wind power
Despite the rigors of scientific inquiry and the methodical approaches of the world's most talented researchers, sometimes science has a surprise in store.

Graphene composite may keep wings ice-free
A thin coating of graphene nanoribbons in epoxy developed at Rice University has proven effective at melting ice on a helicopter blade.

Making green fuels, no fossils required
Using solar or wind power to produce carbon-based fuels, which are commonly called fossil fuels, might seem like a self-defeating approach to making a greener world.

Offshore wind farms could be more risky for gannets than previously thought, study shows
Offshore wind farms which are to be built in waters around the UK could pose a greater threat to protected populations of gannets than previously thought, according to a new study by researchers at the universities of Leeds, Exeter and Glasgow.

New technology could reduce wind energy costs
Engineers from the University of Sheffield have developed a novel technique to predict when bearings inside wind turbines will fail which could make wind energy cheaper.

Study finds price of wind energy in US at an all-time low, averaging under 2.5¢/kWh
Wind energy pricing is at an all-time low, according to a new report released by the U.S. Department of Energy and prepared by Lawrence Berkeley National Laboratory (Berkeley Lab). The prices offered by wind projects to utility purchasers averaged under 2.5¢/kWh for projects negotiating contracts in 2014, spurring demand for wind energy.

Wind energy provides 8 percent of Europe's electricity
EU's grid connected cumulative capacity in 2014 reached 129 GW, meeting 8% of European electricity demand, equivalent to the combined annual consumption of Belgium, the Netherlands, Greece and Ireland.

Silent flights: How owls could help make wind turbines and planes quieter
An investigation into how owls fly and hunt in silence has enabled researchers to develop a prototype coating for wind turbine blades that could significantly reduce the amount of noise they make.

Renewable energy's record year helps uncouple growth of global economy and CO2 emissions
Renewable energy targets and other support policies now in place in 164 countries powered the growth of solar, wind and other green technologies to record-breaking energy generation capacity in 2014.
More Wind Turbines Current Events and Wind Turbines News Articles

Wind Power For Dummies

Wind Power For Dummies
by Ian Woofenden (Author)

The consumer guide to small-scale wind electricity production!

Maybe you're not T. Boone Pickens, but you can build your own home-sized wind-power empire right in your back yard. Wind Power For Dummies supplies all the guidance you need to install and maintain a sustainable, cost-effective wind generator to power your home for decades to come. This authoritative, plain-English guide walks you through every step of the process, from assessing your site and available wind sources to deciding whether wind power is the solution for you, from understanding the mechanics of wind power and locating a contractor to install your system to producing your own affordable and sustainable electricity. Guides you step by step through process of selecting, installing, and operating a...

Do-it-Yourself Solar and Wind Energy System: DIY Off-grid and On-grid Solar Panel and Wind Turbine System

Do-it-Yourself Solar and Wind Energy System: DIY Off-grid and On-grid Solar Panel and Wind Turbine System
by Eric Layton (Author)

Eric Layton, an engineer in the solar industry who installs solar panels, wrote this guide for readers that are trying to build their own solar or wind system. Using pictures, this do-it-yourself (DIY) solar and wind system was built with a battery back-up system. His new book is a comprehensive guide on the design, thought process, equipment, and technique on designing this DIY system. Using photographs taken throughout the building process, he covers why he chose certain components in addition to any issues building and installing. This book was written to help fellow solar and wind enthusiasts, as well as inspire those who would like to build their own solar and wind DIY system.

Wind Turbine Technology: Principles and Design

Wind Turbine Technology: Principles and Design
by Muyiwa Adaramola (Editor)

This important book presents a selection of new research on wind turbine technology, including aerodynamics, generators and gear systems, towers and foundations, control systems, and environmental issues. This informative book: • Introduces the principles of wind turbine design • Presents methods for analysis of wind turbine performance • Discusses approaches for wind turbine improvement and optimization • Covers fault detection in wind turbines • Describes mediating the adverse effects of wind turbine use and installation

Wind Turbines

Wind Turbines
by Steven Leske (Author)

A discussion about wind turbines and their importance to the planet.

Sixteen Wind Turbines: Crystal seas, blase prairielands, and......

Sixteen Wind Turbines: Crystal seas, blase prairielands, and......
by BookRix

The memoirs of my first trip to Cornwall in over forty years, and the first ever to the North Cornish Coast. It was here that I finally found where heaven was.

Like so many prairielands in the UK, Cornwall is not short of paradise for the hardened rambler.

Wind Turbine Technology (Go Green with Renewable Energy Resources)

Wind Turbine Technology (Go Green with Renewable Energy Resources)
by Ahmad Hemami (Author)

Wind energy is a rapidly growing and the demand for trained technicians is high. WIND TURBINE TECHNOLOGY, is a comprehensive and well illustrated book on the theory and operations of wind turbines that generate electricity for power companies. This book is written as an introduction to wind energy technology. It prepares readers for a career as wind energy technicians who are responsible for maintaining, servicing and troubleshooting turbines on wind farms. This is an inclusive book that covers the main subjects associated with wind turbines. Dr. Hemami uses a practical, step-by-step manner with many examples and applications to help you to have a better understanding of the material. The book is divided into 17 progressive chapters. The book is divided into progressive sections,...

Wind Turbines: Fundamentals, Technologies, Application, Economics

Wind Turbines: Fundamentals, Technologies, Application, Economics
by Erich Hau (Author), Horst von Renouard (Translator)

Wind Turbines addresses all those professionally involved in research, development, manufacture and operation of wind turbines. It provides a cross-disciplinary overview of modern wind turbine technology and an orientation in the associated technical, economic and environmental fields. It is based on the author's experience gained over decades designing wind energy converters with a major industrial manufacturer and, more recently, in technical consulting and in the planning of large wind park installations, with special attention to economics. The second edition accounts for the emerging concerns over increasing numbers of installed wind turbines. In particular, an important new chapter has been added which deals with offshore wind utilisation. All advanced chapters have been extensively...

Projects to Get You Off the Grid: Rain Barrels, Chicken Coops, and Solar Panels

Projects to Get You Off the Grid: Rain Barrels, Chicken Coops, and Solar Panels
by (Author), Noah Weinstein (Editor)

Instructables is back with this compact book focused on a series of projects designed to get you thinking creatively about thinking green. Twenty Instructables illustrate just how simple it can be to make your own backyard chicken coop, or turn a wine barrel into a rainwater collector.

Illustrated with dozens of full-color photographs per project accompanying easy-to-follow instructions, this Instructables collection utilizes the best that the online community has to offer, turning a far-reaching group of people into a mammoth database churning out ideas to make life better, easier, and in this case, greener, as this volume exemplifies.

A Wind Turbine Recipe Book

A Wind Turbine Recipe Book

A very practical, hands-on guide to building your own wind turbine, complete with drawings and detailed specifications of all the materials and processes. Six different sizes of turbines are covered, and also three different battery voltages for each and some guidance for those who wish to connected directly the mains grid.

This publication is the fruit of ten years spent teaching practical courses during which wind turbines are built and tested. Hugh Piggott has spent thirty years off grid an uses wind energy for his own power. He has designed several turbines for manufacture in developing world situations and written a very popular book 'Windpower Workshop' about the theory of wind turbine design and installation. Numerous groups worldwide have started to build wind turbines...

Wind Turbine Maintenance Level 1 Volume 1 Trainee Guide (Nccer Contren Learning)

Wind Turbine Maintenance Level 1 Volume 1 Trainee Guide (Nccer Contren Learning)
by NCCER (Author)

This exceptionally produced trainee guide features a highly illustrated design, technical hints and tips from industry experts, review questions and a whole lot more! Key content includes: Introduction to Wind Energy, Introduction to Wind Turbine Safety, Climbing Wind Towers, Introduction to Electrical Circuits, Electrical Theory, Electrical Test Equipment, and Electrical Wiring.     Instructor Supplements Instructors: Product supplements may be ordered directly through OASIS at For more information contact your Pearson NCCER/Contren Sales Specialist at   ·    Annotated Instructor's Guide (AIG) Paperback (Includes access code for Instructor Resource Center) 978-0-13-272049-6 ·  ...

© 2017