Science Current Events | Science News | Brightsurf.com
 

Neutrinos: Ghostly particles with unstable egos

September 06, 2011
They were always mysterious. 26 years had to pass before the prediction of theoretical physics was confirmed and the existence of neutrinos was finally proven experimentally in 1956. The reason for this ordeal: Neutrinos only interact by the weak interaction with other particles of matter. When a cosmic neutrino approaches the earth, it has the best chance of passing through the whole globe unhindered. It is correspondingly difficult to find direct evidence of neutrinos with the help of a detector. Further decades passed in the discussion about their masses: None or small but finite mass? In the meantime it is considered certain that the ghostly particles are carrying mass, if only a virtually infinitesimal amount: According to today's knowledge, no neutrino should exist that is heavier than 1 eV (an electron "weighs" about 500,000 eV!). There are three types of neutrinos. This is also believed to be true today, so that neutrinos can each easily be classified in one of the three particle families in the framework of the standard model.

The knowledge of the neutrino mass is based on numerous experiments, in which so-called neutrino oscillations were observed. Neutrinos freely flying through the space of a particular family (i.e. the electron neutrino) can transform themselves spontaneously into a neutrino of another family affiliation (the muon neutrino or tau neutrino). One refers to an oscillation because the neutrino may change its family affiliation periodically during an extended journey. Such oscillations are only possible if the particles are carrying mass. The experimental evidence of neutrino oscillations (and thus a neutrino mass other than zero) is among the greatest breakthroughs of modern particle physics in the past 20 years.

The conversion process among different neutrino flavors depends on three so-called mixing angles Theta 12, Theta 23 and Theta 13. In interplay with the neutrino mass-squared differences they regulate the transition probabilities among different flavors. Of the three mixing angles only two are well known and have large values, while the third one Theta 13 is at the focus of current searches. So far, it was known that its value had to be small compared to the other two neutrino mixing angles. That is, Theta 13 = 0 could not be excluded. In the past, several independent projects have tried to measure this elusive parameter without success. The most important piece of information came in 1998 from the Chooz experiment in France, which established that the oscillation evoked by Theta 13 cannot be larger than approximately one tenth of those induced by the each of the other two neutrino mixing angles.

Three years ago a group of theoretical physicists of whom one, Antonio Palazzo, is now at the Excellence Cluster Universe, the others at the University and INFN of Bari, evidenced for the first time a weak hint of non-zero Theta 13 thanks to an accurate work of global analysis of all the existing neutrino oscillation data. In the meantime, two accelerator experiments (MINOS and T2K) were at work to nailing down Theta 13 and they have recently released their results. Notably, both experiments point towards a non-zero Theta 13, in agreement with the hint evidenced by the group of theorists. By combining their previous findings with the new accelerator data, in June 2011 the same group came for the first time to a statistically clear conclusion according to which sin² Theta 13 ≈ 0.02 with a confidence level of at least 3 Sigma. This means that the odds against Theta 13 > zero are 1:400.

However, physicists are very prudent and, before claiming a discovery, need to have a higher confidence level of 5 Sigma, diminishing the odds against Theta 13 > zero to 1:1 million. In order to provide secure evidence, the researchers are performing other experiments. Among these, the reactor experiment Double-Chooz, in which physicists of the Universe Clusters are strongly involved, will have a crucial role. For this purpose, it has been developed a particularly effective, terrestrial neutrino source: The particles (more precisely: anti-neutrinos) are generated and emitted during the fission processes in a nuclear power plant in particularly high flux. About 1020 antineutrinos leave a typical reactor every second. For this reason, a new experiment, the inheritor of the forerunning Chooz experiment, has started in the vicinity of the nuclear power plant in the French municipality Chooz. Thanks to this setup the value of Theta 13 will be measured with a precision that hitherto has not been achieved.

The principle behind the Double-Chooz experiment is very simple: Immediately after their generation in the reactor, several anti-neutrinos collide with a detector located 400 meters away. The spatial proximity ensures that no oscillations (or only extremely few) occur between emission and initial detection. The first detector thus measures the electron anti-neutrinos, which haven't transformed to muon and or tau neutrinos yet. A second detector of identical construction is located approximately 1,050 meters away from the reactor. If the value of the neutrino mixing angle Theta 13 is large enough, a part of the electron anti-neutrinos will become muon or tau anti-neutrinos as a result of the oscillations. The electron-anti-neutrino rate observed at the second detector therefore is much smaller than expected without oscillations.

Both detectors are filled with about 10 tons of scintillation fluid. If an electron-anti-neutrino interacts with a proton within the fluid, this will lead to inverse-beta decay: The proton captures the electron-anti-neutrino thereby transforming into one neutron by emitting one positron. Both particles generate one quick flash each in the liquid in a set time sequence. 390 photo sensors mounted on the walls of the vessel record the events. The Double Chooz experiment started physics data taking in April 2011 and will search for corresponding signals for five years. The detector performance and the status of data taking will be reported at the TAUP conference in Munich from 5 to 9 September 2011. First results are expected by the end of this year.

Establishing that Theta 13 is effectively different from zero would entail that all the three mixing angles are non-vanishing. This would provide the three neutrino flavors with maximal freedom of flipping one to each other. In turn, such a high degree of freedom is the necessary condition to generate CP-violation in the leptonic sector, i.e. to give rise to a different behavior of neutrinos and anti-neutrinos. The observation of CP-violation is now the next target of neutrino physicists as it would have significant consequences for several unanswered questions of modern physics. It could soon be clarified, in particular, whether neutrinos were responsible for the minimal surplus of matter compared to anti-matter in the early Universe. Without this asymmetry, all matter would have been transformed to radiation shortly after the birth of the Universe. There would be no galaxies, no stars or planets and no one who could measure Theta 13.

Technische Universitaet Muenchen


Related Neutrino Current Events and Neutrino News Articles


They know the drill: UW leads the league in boring through ice sheets
Wisconsin is famous for its ice fishers - the stalwarts who drill holes through lake ice in the hope of catching a winter dinner.

POLARBEAR seeks cosmic answers in microwave polarization
An international team of physicists has measured a subtle characteristic in the polarization of the cosmic microwave background radiation that will allow them to map the large-scale structure of the universe, determine the masses of neutrinos and perhaps uncover some of the mysteries of dark matter and dark energy.

Princeton scientists observe elusive particle that is its own antiparticle
Princeton University scientists have observed an exotic particle that behaves simultaneously like matter and antimatter, a feat of math and engineering that could yield powerful computers based on quantum mechanics.

Hide & Seek: Sterile Neutrinos Remain Elusive
The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called sterile neutrino, a possible new type of neutrino beyond the three known neutrino "flavors," or types.

Antineutrino detectors could aid non-proliferation
Physicists at the Large Hadron Collider in Switzerland and even in the fictional world of CBS' "The Big Bang Theory" look to subatomic particles called neutrinos to answer the big questions about the universe.

Radiation from Early Universe Found Key to Answer Major Questions in Physics
Astrophysicists at UC San Diego have measured the minute gravitational distortions in polarized radiation from the early universe and discovered that these ancient microwaves can provide an important cosmological test of Einstein's theory of general relativity.

HADES searches for Dark Matter
Although Dark Energy and Dark Matter appear to constitute over 95 percent of the universe, nobody knows of which particles they are made up.

New data for HCV genotype 4 patients with simeprevir- and sofosbuvir-based regimens
Results from RESTORE , a phase III, multicentre, single-arm, open-label study presented today at the International Liver CongressTM 2014 showed that simeprevir 150 mg once-daily for 12 weeks in combination with peginterferon and ribavirin (followed by 12 or 36 weeks of peginterferon and ribavirin) was effective and well tolerated in hepatitis C virus (HCV) genotype 4-infected patients, consistent with previous observations in HCV genotype 1-infected patients.

The mystery of neutron stars heats up
Until now, scientists were pretty sure they knew how the surface of a neutron star - a super dense star that forms when a large star explodes and its core collapses into itself - can heat itself up.

Searching for Cosmic Accelerators Via IceCube
In our universe there are particle accelerators 40 million times more powerful than the Large Hadron Collider (LHC) at CERN.
More Neutrino Current Events and Neutrino News Articles

Neutrino

Neutrino
by Frank Close (Author)


Neutrinos are perhaps the most enigmatic particles in the universe. These tiny, ghostly particles are formed by the billions in stars and pass through us constantly, unseen, at almost the speed of light. Yet half a century after their discovery, we still know less about them than all the other varieties of matter that have ever been seen.

In this engaging, concise volume, renowned scientist and writer Frank Close gives a vivid account of the discovery of neutrinos and our growing understanding of their significance, touching on speculative ideas concerning the possible uses of neutrinos and their role in the early universe along the way. Close begins with the discovery of radioactivity by Henri Becquerel and Marie and Pierre Curie, the early model of the atom by Ernest...

Neutrino Hunters: The Thrilling Chase for a Ghostly Particle to Unlock the Secrets of the Universe

Neutrino Hunters: The Thrilling Chase for a Ghostly Particle to Unlock the Secrets of the Universe
by Ray Jayawardhana (Author)


Winner of the Canadian Science Writers Association 2014 Science in Society Book Award
A Publishers Weekly Best Science Book of the Season
A Book to Watch Out For, The New Yorker’s Page-Turner Blog
A Los Angeles Times Gift Guide Selection
One of the Best Physics Books of 2013, Cocktail Party Physics Blog, Scientific American

Detective thriller meets astrophysics in this adventure into neutrinos and the scientists who pursue them

The incredibly small bits of matter we call neutrinos may hold the secret to why antimatter is so rare, how mighty stars explode as supernovae, what the universe was like just seconds after the big bang, and even the inner workings of our own planet.

For more than eighty years, adventurous minds from around the world have been...

Fundamentals of Neutrino Physics and Astrophysics

Fundamentals of Neutrino Physics and Astrophysics
by Carlo Giunti (Author), Chung W. Kim (Author)


This book deals with neutrino physics and astrophysics- a field in which some of the most exciting recent developments in particle physics, astrophysics and cosmology took place. The book is the most up-to-date, comprehensive and self-contained treatment of key issues in neutrino physics. It discusses all the topics vital to the understanding of the nature of neutrinos such as what they are, how to describe them, how they behave in nature, and the roles of neutrinos play in shaping our Universe. The book provides comprehensive discussions, both experimental and theoretical, with relevant mathematical details, on neutrino oscillations, extra-terrestrial as well as terrestrial neutrinos and relic neutrinos. It also discusses many implications of current experimental data on rector,...

The Perfect Wave: With Neutrinos at the Boundary of Space and Time

The Perfect Wave: With Neutrinos at the Boundary of Space and Time
by Heinrich Päs (Author)


Almost weightless and able to pass through the densest materials with ease, neutrinos seem to defy the laws of nature. But these mysterious particles may hold the key to our deepest questions about the universe, says physicist Heinrich Päs. In The Perfect Wave, Päs serves as our fluent, deeply knowledgeable guide to a particle world that tests the boundaries of space, time, and human knowledge. The existence of the neutrino was first proposed in 1930, but decades passed before one was detected. Päs animates the philosophical and scientific developments that led to and have followed from this seminal discovery, ranging from familiar topics of relativity and quantum mechanics to more speculative theories about dark energy and supersymmetry. Many cutting-edge topics in neutrino...

Neutrino C.A.T.

Neutrino C.A.T.
by TTA Press


Neutrino C.A.T is a short story first published in the online magazine A Writer's Choice Literary Journal in 1998. It was my second published story and soon after its appearance the solar neutrino ‘problem’ was resolved and hence the background became both obsolete and unnecessary. However I still like it despite those, and other, flaws.

When I posted this I assumed I could set the price to zero. Unfortunately that proved to be impossible. Sorry about that. I 'll have to post a test file such as a TTA Press publication (rather than myself) that will be worth your money.

This story is a test file uploaded to check formatting and appearance before we try any TTA Press publications on Amazon. Please have a look at it on your e reader, or any other mobile device...

Neutrino Physics, Second Edition (Series in High Energy Physics, Cosmology and Gravitation)

Neutrino Physics, Second Edition (Series in High Energy Physics, Cosmology and Gravitation)
by Kai Zuber (Author)


When Kai Zuber’s pioneering text on neutrinos was published in 2003, the author correctly predicted that the field would see tremendous growth in the immediate future. In that book, Professor Zuber provided a comprehensive self-contained examination of neutrinos, covering their research history and theory, as well as their application to particle physics, astrophysics, nuclear physics, and the broad reach of cosmology; but now to be truly comprehensive and accurate, the field’s seminal reference needs to be revised and expanded to include the latest research, conclusions, and implications. Revised as needed to be equal to the research of today, Neutrino Physics, Second Edition delves into neutrino cross sections, mass measurements, double beta decay, solar neutrinos, neutrinos from...

The Physics of Neutrinos

The Physics of Neutrinos
by Vernon Barger (Author), Danny Marfatia (Author), Kerry Whisnant (Author)


The physics of neutrinos--uncharged elementary particles that are key to helping us better understand the nature of our universe--is one of the most exciting frontiers of modern science. This book provides a comprehensive overview of neutrino physics today and explores promising new avenues of inquiry that could lead to future breakthroughs. The Physics of Neutrinos begins with a concise history of the field and a tutorial on the fundamental properties of neutrinos, and goes on to discuss how the three neutrino types interchange identities as they propagate from their sources to detectors. The book shows how studies of neutrinos produced by such phenomena as cosmic rays in the atmosphere and nuclear reactions in the solar interior provide striking evidence that neutrinos have mass, and...

The Neutrino: Ghost Particle of the Atom

The Neutrino: Ghost Particle of the Atom
by Isaac Asimov (Author)


PB

Neutrino Cosmology

Neutrino Cosmology
by Dr Julien Lesgourgues (Author), Dr Gianpiero Mangano (Author), Professor Gennaro Miele (Author), Dr Sergio Pastor (Author)


The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate...

Dark Matter, Neutrinos, and Our Solar System

Dark Matter, Neutrinos, and Our Solar System
by Nirmala Prakash (Author)


Dark Matter, Neutrinos, and Our Solar System is a unique enterprise that should be viewed as an important contribution to our understanding of dark matter, neutrinos and the solar system. It describes these issues in terms of links, between cosmology, particle and nuclear physics, as well as between cosmology, atmospheric and terrestrial physics. It studies the constituents of dark matter (classified as hot warm and cold) first in terms of their individual structures (baryonic and non-baryonic, massive and non-massive, interacting and non-interacting) and second, in terms of facilities available to detect these structures (large and small). Neutrinos (an important component of dark matter) are treated as a separate entity. A detailed study of these elusive (sub-atomic) particles is done,...

© 2014 BrightSurf.com