Science Current Events | Science News |

Millions of new regulatory elements found in human genome

October 13, 2011

An international research team led by Kerstin Lindblad-Toh at the Broad Institute, US and Uppsala University, Sweden has mapped and compared the genomes of 29 mammals. The findings, published in Nature, reveal millions of new regulatory elements in the human genome that in various ways govern how proteins are formed. The new knowledge is important for our understanding of how mutations in human genes give rise to diseases.

The human genome was mapped some ten years ago, but its function has been difficult to understand. Recent comparisons with mice, rats, and dogs, have shown that humans have more than 20,000 genes. However, it has been difficult to find the elements in the genome that determine when, where, and how genes produce proteins.

By comparing a large number of mammals, scientists have now created a catalogue of millions of regulatory elements found both between and within genes. These elements are incredibly important in making us humans into the complex organisms that we are, even though our genes are rather similar to those of other vertebrates," says the lead author of the study, Kerstin Lindblad-Toh, Scientific Director of Vertebrate Genome biology, at the Broad Institute in the US and professor of comparative genomics, Uppsala University, Sweden.

Human genes constitute only about 1.5 percent of the genome, whereas regulatory elements appear to take up about three times as much space. The researchers have now been able to show where a majority of these regulatory elements are located in the genome. By studying patterns in these elements, and combining this information with other types of genetic data, they have been able to understand how many of these regulatory elements function.

"The elements we find can have entirely different functions. They can make different cell types use different versions of a certain gene, or can turn off a gene if the concentration of a certain compound is too high in a cell. Above all we see that proteins that govern fetal development and the function of the nervous system have a huge number of regulatory elements," says Kerstin Lindblad-Toh.

The regulatory elements that were found in this comparison between 29 mammals are important for many of our central functions, which are shared by placental mammals. However, the scientists were also looking for how these elements changed over time in various groups of mammals as they adapted to different living conditions.

"Among other things, we can see what parts of proteins and what regulatory elements changed rapidly in primates and humans. With the help of about a hundred other mammal species, we believe we will understand the function of every key base in the human genome and get a better understanding of how changes in genes made rodents into rodents and primates into primates," says Kerstin Lindblad-Toh.

Uppsala University

Related Regulatory Elements Current Events and Regulatory Elements News Articles

IU biologists report method to calculate lifetime energy requirements of cells, genes
In a recently published paper, Indiana University biologists have calculated the lifetime energy requirements of multiple types of cells, as well as the energy required to replicate and express the genes within these cells.

A treasure trove of new cancer biomarkers
Biomarkers, which allow diseases to be diagnosed and staged based on relatively non-invasive blood tests, have been identified for several types of cancers, but for most cancers remain elusive.

CRISPR brings precise control to gene expression
Researchers have demonstrated the exceptional specificity of a new way to switch sequences of the human genome on or off without editing the underlying genetic code.

Attacking acute myeloid leukemia
A team of Harvard researchers and other collaborators led by Professor of Chemistry and Chemical Biology Matthew Shair has demonstrated that a molecule isolated from sea sponges and later synthesized in Shair's lab, can halt the growth of cancerous cells and could open the door to a new treatment for leukemia.

Joining the genomic dots
Researchers at the Babraham Institute and the Francis Crick Institute have developed and used a new technique to join the dots in the genomic puzzle.

Yale researchers map 'switches' that shaped the evolution of the human brain
Thousands of genetic "dimmer" switches, regions of DNA known as regulatory elements, were turned up high during human evolution in the developing cerebral cortex, according to new research from the Yale School of Medicine.

Penn researchers unwind the mysteries of the cellular clock
Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it is increasingly clear that disruption of those cycles can lead to metabolic disease.

Stanford researchers compare mammals' genomes to aid human clinical research
For years, scientists have considered the laboratory mouse one of the best models for researching disease in humans because of the genetic similarity between the two mammals.

New view of mouse genome finds many similarities, striking differences with human genome
Looking across evolutionary time and the genomic landscapes of humans and mice, an international group of researchers has found powerful clues to why certain processes and systems in the mouse - such as the immune system, metabolism and stress response - are so different from those in people.

Variation in expression of thousands of genes kept under tight constraint in mice, humans
Cold Spring Harbor, NY - An international team of researchers led by Professor Thomas R. Gingeras of Cold Spring Harbor Laboratory (CSHL) and Roderic Guigo (Centre For Genomic Regulation, Barcelona) has identified some 6600 genes whose level of expression varies within a comparatively restricted range in humans and mice.
More Regulatory Elements Current Events and Regulatory Elements News Articles

© 2015