Science Current Events | Science News |

Chalmers scientists create light from vacuum

November 21, 2011
Scientists at Chalmers have succeeded in creating light from vacuum - observing an effect first predicted over 40 years ago. The results have been published in the journal Nature. In an innovative experiment, the scientists have managed to capture some of the photons that are constantly appearing and disappearing in the vacuum.

The experiment is based on one of the most counterintuitive, yet, one of the most important principles in quantum mechanics: that vacuum is by no means empty nothingness. In fact, the vacuum is full of various particles that are continuously fluctuating in and out of existence. They appear, exist for a brief moment and then disappear again. Since their existence is so fleeting, they are usually referred to as virtual particles.

Chalmers scientist, Christopher Wilson and his co-workers have succeeded in getting photons to leave their virtual state and become real photons, i.e. measurable light. The physicist Moore predicted way back in 1970 that this should happen if the virtual photons are allowed to bounce off a mirror that is moving at a speed that is almost as high as the speed of light. The phenomenon, known as the dynamical Casimir effect, has now been observed for the first time in a brilliant experiment conducted by the Chalmers scientists.

"Since it's not possible to get a mirror to move fast enough, we've developed another method for achieving the same effect," explains Per Delsing, Professor of Experimental Physics at Chalmers. "Instead of varying the physical distance to a mirror, we've varied the electrical distance to an electrical short circuit that acts as a mirror for microwaves."

The "mirror" consists of a quantum electronic component referred to as a SQUID (Superconducting quantum interference device), which is extremely sensitive to magnetic fields. By changing the direction of the magnetic field several billions of times a second the scientists were able to make the "mirror" vibrate at a speed of up to 25 percent of the speed of light.

"The result was that photons appeared in pairs from the vacuum, which we were able to measure in the form of microwave radiation," says Per Delsing. "We were also able to establish that the radiation had precisely the same properties that quantum theory says it should have when photons appear in pairs in this way."

What happens during the experiment is that the "mirror" transfers some of its kinetic energy to virtual photons, which helps them to materialise. According to quantum mechanics, there are many different types of virtual particles in vacuum, as mentioned earlier. Göran Johansson, Associate Professor of Theoretical Physics, explains that the reason why photons appear in the experiment is that they lack mass.

"Relatively little energy is therefore required in order to excite them out of their virtual state. In principle, one could also create other particles from vacuum, such as electrons or protons, but that would require a lot more energy."

The scientists find the photons that appear in pairs in the experiment interesting to study in closer detail. They can perhaps be of use in the research field of quantum information, which includes the development of quantum computers.

However, the main value of the experiment is that it increases our understanding of basic physical concepts, such as vacuum fluctuations - the constant appearance and disappearance of virtual particles in vacuum. It is believed that vacuum fluctuations may have a connection with "dark energy" which drives the accelerated expansion of the universe. The discovery of this acceleration was recognised this year with the awarding of the Nobel Prize in Physics.

Chalmers University of Technology

Related Virtual Particles Current Events and Virtual Particles News Articles

Boosting the Force of Empty Space
Vacuum fluctuations may be among the most counter-intuitive phenomena of quantum physics. Theorists from the Weizmann Institute (Rehovot, Israel) and the Vienna University of Technology propose a way to amplify their force.

Quantum thermodynamics
No man is an island, entire of itself, said poet John Donne. And no atom neither. Even in the middle of intergalactic space, atoms feel the electromagnetic field---also known as the cosmic microwave background---left over by the Big Bang.

Raising the prospects for quantum levitation
More than half-a-century ago, the Dutch theoretical physicist Hendrik Casimir calculated that two mirrors placed facing each other in a vacuum would attract.

New tool may yield smaller, faster optoelectronics
The steady improvement in speed and power of modern electronics may soon hit the brakes unless new ways are found to pack more structures into microscopic spaces. Unfortunately, engineers are already approaching the limit of what light-the choice tool for "tweezing" tiny features-can achieve.

NASA's close-up look at a hurricane's eye reveals a new 'fuel' source
In the eye of a furious hurricane, the weather is often quite calm and sunny. But new NASA research is providing clues about how the seemingly subtle movement of air within and around this region provides energy to keep this central "powerhouse" functioning.
More Virtual Particles Current Events and Virtual Particles News Articles

Quantum Mechanics 3: Wavefunctions, Superposition, & Virtual Particles (Everyone's Guide Series Book 15)

Quantum Mechanics 3: Wavefunctions, Superposition, & Virtual Particles (Everyone's Guide Series Book 15)
by Real Science Publishing

This book is the third stage of our exploration of Quantum Mechanics in the Everyone’s Guide Series. Here, we explore the heart of Quantum Mechanics: wavefunctions, the Schrödinger wave equation, superposition, and the virtual particles that spring forth thanks to the Uncertainty Principle. We will see how these remarkable concepts apply to real particles in real high-energy physics experiments.

Readers will benefit from a prior reading of Quantum Mechanics 1: Particle & Waves and Quantum Mechanics 2: Reality, Uncertainty & Schrödinger's Cat. However, to make this book more self-contained, we do review the most important points described in detail in the prior eBooks on Quantum Mechanics in the Everyone’s Guide Series.

The Everyone's Guide Series explores...

A Brief History of Time

A Brief History of Time
by Stephen Hawking (Author)


A landmark volume in science writing by one of the great minds of our time, Stephen Hawking’s book explores such profound questions as: How did the universe begin—and what made its start possible? Does time always flow forward? Is the universe unending—or are there boundaries? Are there other dimensions in space? What will happen when it all ends?

Told in language we all can understand, A Brief History of Time plunges into the exotic realms of black holes and quarks, of antimatter and “arrows of time,” of the big bang and a bigger God—where the possibilities are wondrous and unexpected. With exciting images and profound imagination, Stephen Hawking brings us closer to the ultimate secrets at the very heart of...

Parables for the Virtual: Movement, Affect, Sensation (Post-Contemporary Interventions)

Parables for the Virtual: Movement, Affect, Sensation (Post-Contemporary Interventions)
by Brian Massumi (Author)

Although the body has been the focus of much contemporary cultural theory, the models that are typically applied neglect the most salient characteristics of embodied existence—movement, affect, and sensation—in favor of concepts derived from linguistic theory. In Parables for the Virtual Brian Massumi views the body and media such as television, film, and the Internet, as cultural formations that operate on multiple registers of sensation beyond the reach of the reading techniques founded on the standard rhetorical and semiotic models.
Renewing and assessing William James’s radical empiricism and Henri
Bergson’s philosophy of perception through the filter of the post-war French philosophy of Deleuze, Guattari, and Foucault, Massumi links a cultural logic of variation to...

Death by Black Hole: And Other Cosmic Quandaries

Death by Black Hole: And Other Cosmic Quandaries
by Neil deGrasse Tyson (Author)

“[Tyson] tackles a great range of subjects . . . with great humor, humility, and—most important— humanity.” —Entertainment Weekly Loyal readers of the monthly "Universe" essays in Natural History magazine have long recognized Neil deGrasse Tyson's talent for guiding them through the mysteries of the cosmos with clarity and enthusiasm. Bringing together more than forty of Tyson's favorite essays, ?Death by Black Hole? explores a myriad of cosmic topics, from what it would be like to be inside a black hole to the movie industry's feeble efforts to get its night skies right. One of America's best-known astrophysicists, Tyson is a natural teacher who simplifies the complexities of astrophysics while sharing his infectious fascination for our...

The Illustrated Brief History of Time, Updated and Expanded Edition

The Illustrated Brief History of Time, Updated and Expanded Edition
by Stephen William Hawking (Author)

In the years since its publication in 1988, Stephen Hawking's A Brief History Of Time has established itself as a landmark volume in scientific writing.  It has become an international publishing phenomenon, translated into forty languages and selling over nine million copies.  The book was on the cutting edge of what was then known about the nature of the universe, but since that time there have been extraordinary advances in the technology of macrocosmic worlds.  These observations have confirmed many of Professor Hawkin's theoretical predictions in the first edition of his book, including the recent discoveries of the Cosmic Background Explorer satellite (COBE), which probed back in time to within 300,000 years of the fabric of space-time that he had projected.

Eager to...

Virtual Earth Graduate

Virtual Earth Graduate
by TJ Hegland (Author)

Virtual Earth Graduate is unique. What if many things you think you know about Physics, Earth History and Religion are false? What if this is not our planet and we’re not here alone? Are there hybrids here with us? Is Man being visited by 3D Extraterrestrial intelligences? Is someone on the Moon? What would have to be true about planet Earth for it to look the way it does? Who built all the monolithic walls, monuments and buildings that Man cannot even duplicate today? What are the chances that Earth is a Simulation as current Physics proposes? While not 100% conclusive, the evidence is tantalizing. In short… Are you really living on the planet you think you are? These and more issues are examined in this book and will enlighten the reader – probably for the first time in years....

The Science Book: Everything You Need to Know About the World and How It Works

The Science Book: Everything You Need to Know About the World and How It Works
by National Geographic (Author), Marshall Brain (Foreword)

The Science Book: Everything You Need to Know About the World and How It Works encapsulates centuries of scientific thought in one volume. Natural phenomena, revolutionary inventions, scientific facts, and the most up-to-date questions are all explained in detailed text that is complemented by visually arresting graphics.
Six major sections ranging from the universe and the planet Earth to biology, chemistry, physics, and mathematics are further broken down into subsections that encompass everything from microscopic life to nuclear power.
The Science Book covers a wide range of scientific areas, providing both a general overview of topics for the browsing reader, and more specific information for those who wish to obtain in-depth insight into a particular subject...

The Universe in a Nutshell

The Universe in a Nutshell
by Stephen William Hawking (Author)

Stephen Hawking’s phenomenal, multimillion-copy bestseller, A Brief History of Time, introduced the ideas of this brilliant theoretical physicist to readers all over the world.

Now, in a major publishing event, Hawking returns with a lavishly illustrated sequel that unravels the mysteries of the major breakthroughs that have occurred in the years since the release of his acclaimed first book.

The Universe in a Nutshell

• Quantum mechanics
• M-theory
• General relativity
• 11-dimensional supergravity
• 10-dimensional membranes
• Superstrings
• P-branes
• Black holes

One of the most influential thinkers of our time, Stephen Hawking is an intellectual icon, known not only for the adventurousness of his ideas but for the...

Origins: Fourteen Billion Years of Cosmic Evolution

Origins: Fourteen Billion Years of Cosmic Evolution
by Neil deGrasse Tyson (Author), Donald Goldsmith (Author)

“Who can ask for better cosmic tour guides to the universe than Drs. Tyson and Goldsmith?” —Michio Kaku, author of Hyperspace and Parallel Worlds Our true origins are not just human, or even terrestrial, but in fact cosmic. Drawing on recent scientific breakthroughs and the current cross-pollination among geology, biology, astrophysics, and cosmology, ?Origins? explains the soul-stirring leaps in our understanding of the cosmos. From the first image of a galaxy birth to Spirit Rover's exploration of Mars, to the discovery of water on one of Jupiter's moons, coauthors Neil deGrasse Tyson and Donald Goldsmith conduct a galvanizing tour of the cosmos with clarity and exuberance. 32 pages of color illustrations

The Theory Of Everything

The Theory Of Everything
by Stephen W Hawking (Author)

In this series of lectures Stephen W.Hawking tries to give an outline of what we think is the history of the universe from the big bang to black holes.The first lecture briefly reviews past ideas about universe and how we got to our present picture.One might call this the history of the universe. The second lecture describes how both Newton s and Einstein s theories of gravity led to the conclusion that the universe could not be static:it had to be either expanding or contracting.This,in turn,implied that there must have been a time between ten and twenty billion years ago when the density of the universe was infinite.This is called the big bang.It would have been the beginning of the universe. The third lecture talks about the black holes.these are formed when a massive star or an even...

© 2014