Science Current Events | Science News |

Scientists publish new findings about the 'supernova of a generation'

December 15, 2011
(Santa Barbara, Calif.) -- An international team of scientists, including astrophysicists from UC Santa Barbara, has discovered that a supernova that exploded in August -- dubbed the supernova of a generation -- was a "white dwarf" star, and that its companion star could not have been a "red giant," as previously suspected. The findings are published in two papers in the journal Nature this week.

White dwarf stars are small but very dense stars, and red giants are stars that swell to massive proportions when they approach middle age.

The new "type Ia" thermonuclear supernova, known as PTF 11kly, exploded on August 24th in the Pinwheel galaxy, located in the "Big Dipper," also known as Ursa Major. These supernovae are used to measure dark energy, which scientists believe is related to the expansion of the universe. The discovery of the supernova was made by an international team of astronomers known as the Palomar Transient Factory.

Located 21 million light-years away, this supernova was practically next door, in cosmic terms, and could be seen in early September with binoculars. The explosion gave scientists their best chance yet to study a thermonuclear supernova up close, with modern instruments.

Over the past 50 years, astrophysicists have discovered that type Ia supernovae are part of binary systems -- two stars orbiting each other. The one that exploded was theorized to be a white dwarf star. "That's what our sun will be at the end of its life," said Andy Howell, a member of the UCSB team. "It will have the mass of the sun crammed into the size of the Earth." Howell is a staff scientist at the UCSB-affiliated Las Cumbres Observatory Global Telescope Network LCOGT, an assistant adjunct professor of physics at UCSB, and co-author of both papers.

Scientists are upbeat about the finding that the supernova is a white dwarf. "It's been nearly 50 years since the original theoretical suggestions were made that these supernovae were caused by white dwarfs," said co-author Lars Bildsten. "The observational proof is very satisfying to see!" Bildsten is a permanent member of UCSB's Kavli Institute of Theoretical Physics (KITP) and is UCSB's Wayne Rosing, Simon and Diana Raab Chair in Theoretical Astrophysics.

Such white dwarf stars would normally be dead forever, slowly cooling and freezing solid over cosmic time. However, if it has a companion star, then the white dwarf can steal its matter, and return to life. If they steal too much matter, the carbon atoms will fuse so rapidly that the burning cannot be stopped, leading to an explosion as a Type Ia supernova.

That has long been the leading theory, although proof has remained elusive for decades. One of the papers shows that the exploding star had to be smaller than a tenth of the radius of the sun. That rules out normal stars, and for the first time provides direct evidence that white dwarfs are responsible for Type Ia supernovae. The lead author is Peter Nugent, who discovered the supernova, and is a senior staff scientist at Lawrence Berkeley National Laboratory, and an adjunct professor at UC Berkeley.

Scientists have not yet ascertained the type of the companion star to the white-dwarf-turned supernova. However, they have ruled out the type of star they expected -- a red giant. Previous studies of RS Ophiuci, a binary star system in our own Milky Way galaxy that is similar to the one being studied, has a white dwarf near the limit that will cause it to explode. And, it is being fed by a companion red giant star. So scientists were somewhat surprised that they did not find a red giant next to the supernova that exploded in August.

A second paper regarding the companion star to the white dwarf was led by Weidong Li, a research scientist at the University of California, Berkeley. He explained: "This is the first time through direct imaging of the explosion site, we were able to rule out certain types of stars as the companion to a Type Ia supernova. The second star couldn't have been a massive red giant."

After decades of hunting the origins of Type Ia supernovae, scientists were finally able to make progress in this case for two reasons. In the case of the Li paper, it is because this was the closest thermonuclear supernova since sensitive modern instruments, like those on the Hubble Space Telescope, have been available.

In the Nugent paper, while closeness was necessary, another factor was even more important -- the speed of the discovery. The team discovered the supernova only 11 hours after it exploded, allowing for the first estimate of the size of the star when it blew up. "Not only is this the closest Type Ia supernova in the last 25 years, it is the youngest and brightest ever discovered in the digital age," said Nugent. "Observations with ground- and space-based telescopes from the radio through X-ray wavelengths have provided unprecedented constraints on how the supernova exploded."

The scientists noted that these rapid observations were not due to luck; they were possible because the Palomar 48-inch telescope, which was used to discover the supernova, is effectively a robot. Given regions of the sky to scan, Palomar 48 observes all night long without a human driving it. The data are then automatically processed by computers, and new potential supernovae are presented to the discovery team when they wake up.

In fact, LCOGT is building a global network of telescopes to take this idea to the next level. "If you have telescopes spread out in longitude, it is always dark somewhere, so you can observe targets around the clock," said Howell. "We like to say that the sun will never rise on the LCOGT empire."

LCOGT already has telescopes in Haleakala, Hawaii, and Siding Spring, Australia, as well as at the Sedgwick reserve near Santa Ynez, Calif. In 2012 it will expand to Texas, Chile, and South Africa. Last August, astronomers at LCOGT were able to use the fledgling network to monitor the brightness of the supernova as it rose in the weeks after explosion.

To add to the robotic data, B.J. Fulton, a recent UCSB graduate and astronomer at LCOGT, remotely controlled the 0.8-meter Byrne Observatory Telescope at the Sedgwick Reserve from his home in Santa Barbara 35 miles away. "As soon as I got word of the young supernova from the PTF collaboration I knew that this was a rare opportunity," said Fulton. "I immediately slewed the telescope to M101 and monitored the supernova nearly every night for the next two months. We're still in the process of automating the Sedgwick telescope, so I operated it remotely, but in the future observations like this will happen automatically, as they did at our telescope in Hawaii."

When the supernova reached its peak brightness, Fulton used the Byrne Observatory to take a series of shots, which he composed to make an image that is as aesthetically pleasing as it is scientifically useful. "This is the supermodel of supernovae," said Howell. "The image B.J. created of SN 2011fe is the most beautiful image ever of a thermonuclear supernova and its host galaxy. And the fact that he did it with a modest 0.8-meter telescope is incredible. The previous poster child for type Ia supernovae, SN 1994D, was obtained with the Hubble Space Telescope. This image will be in all the textbooks."

Aside from Bildsten, Fulton, and Howell, other Santa Barbara contributors to the findings include Federica Bianco, Benjamin Dilday, Melissa Graham, and David Sand with UCSB and LCOGT; and Jerod Parrent with LCOGT.

The Palomar Transient Factory (PTF) is based on the 48-inch Oschin Schmidt telescope and the 60-inch telescope of the Palomar Observatory of the California Institute of Technology, and is a collaboration among California Institute of Technology; Columbia University; LCOGT; Lawrence Berkeley Laboratory; Oxford University; University of California, Berkeley; and the Weizmann Institute for Science.

The Nature articles follow on the heels of the December 10 presentation of the Nobel Prize in physics to three astrophysicists. This Nobel Prize recognized the scientists for the discovery that the universe is accelerating its expansion, a finding that they made using type Ia supernovae as a measuring tool, as "standard candles."

University of California - Santa Barbara

Related Supernova Current Events and Supernova News Articles

Out of An Hours-long Explosion, A Stand-In For The First Stars
Astronomers analyzing a long-lasting blast of high-energy light observed in 2013 report finding features strikingly similar to those expected from an explosion from the universe's earliest stars.

Small but Plentiful: How the Faintest Galaxies Illuminated the Early Universe
Light from tiny galaxies more than 13 billion years ago played a larger role than previously thought in creating the conditions in the universe as we know it today, according to a new study by researchers at the Georgia Institute of Technology and the San Diego Supercomputer Center (SDSC) at the University of California, San Diego.

Astronomers Bring The Third Dimension To A Doomed Star's Outburst
In the middle of the 19th century, the massive binary system Eta Carinae underwent an eruption that ejected at least 10 times the sun's mass and made it the second-brightest star in the sky.

Small, but plentiful: how the faintest galaxies illuminated the early universe
Light from tiny galaxies over 13 billion years ago played a larger role than previously thought in creating the conditions in the universe as we know it today, a new study has found. Ultraviolet (UV) light from stars in these faint dwarf galaxies helped strip interstellar hydrogen of electrons in a process called reionization.

Small but significant
They may only be little, but they pack a star-forming punch: new observations from the NASA/ESA Hubble Space Telescope show that starbursts in dwarf galaxies played a bigger role than expected in the early history of the Universe.

Gigantic Explosion Buried in Dust: ALMA Probes Environment around Gamma Ray Bursts
Using the Atacama Large Millimeter/submillimeter Array (ALMA), a team of researchers reports the first-ever detection of molecular gas -- the fuel for star formation -- in two galaxies that were previously rocked by gamma ray bursts (GRBs), the brightest explosions in the Universe.

Astronomers discover first Thorne-Zytkow object, a bizarre type of hybrid star
In a discovery decades in the making, scientists have detected the first of a "theoretical" class of stars first proposed in 1975 by physicist Kip Thorne and astronomer Anna Żytkow.

Lasers create table-top supernova
Laser beams 60,000 billion times more powerful than a laser pointer have been used to recreate scaled supernova explosions in the laboratory as a way of investigating one of the most energetic events in the Universe.

International collaboration replicates amplification of cosmic magnetic fields
Astrophysicists have established that cosmic turbulence could have amplified magnetic fields to the strengths observed in interstellar space.

Supernova Caught in the Act by Palomar Transient Factory
Supernovae-stellar explosions-are incredibly energetic, dynamic events. It is easy to imagine that they are uncommon, but the universe is a big place and supernovae are actually fairly routine.
More Supernova Current Events and Supernova News Articles

The Supernova Advisor: Crossing the Invisible Bridge to Exceptional Client Service and Consistent Growth

The Supernova Advisor: Crossing the Invisible Bridge to Exceptional Client Service and Consistent Growth
by Rob Knapp (Author)

The Supernova Model is a client service, client acquisition, and practice management model that drives an explosive acceleration in revenue and client satisfaction by capitalizing upon the 80/20 Rule. First implemented by financial advisors at Merrill Lynch—under the leadership of author Rob Knapp—it has grown increasingly popular within the financial services industry. The Supernova Advisor skillfully outlines this proven model and reveals how it can be used to create an exceptional experience for your clients, while significantly growing your business.



Nick Miller lives an ordinary life in his hometown of Bakersville. That is, until he starts to notice strange occurrences that seem to be indicative of a sinister cover-up. In a few seconds, his life and the future of civilization on Earth are altered forever by a deadly burst of light from space. This is the story of one man’s struggle to survive, and his ultimate triumph in the face of a tyrannical faction.

Super Nova (Hot Rods)

Super Nova (Hot Rods)
by Samhain Publishing, Ltd.

His demons are no match for her passion. Hot Rods, Book 3Kaige “Super Nova” Davis doesn’t carry a chip on his shoulder. It’s more like a beast in his belly…and right now the monster he’s fought so hard to tame is growling to unleash its legendary temper. Eli has gone behind his back and hired a marketing consultant. But when Kaige storms into the office to give Eli hell, one look at the mocha-skinned brunette seated across the desk flips a switch in his brain. And in his pants. Nola Brown has never experienced Kaige’s powerful brand of sexual charisma. He makes her want to ditch her professional façade and be herself—a mistake she can’t afford to make. Yet just as he talks her defenses down—and proves that grease marks look just as good on her skin as a silk...

Supernova (The Supernova Saga Book 1)

Supernova (The Supernova Saga Book 1)

Evania Laylen’s existence had already been altered once. Little did she know her path was about to glow with a different light. Weeding through the chaos that rocked her life years prior, she struggled with the emptiness of a hollow seed while all the time secretly craving more. In the nick of time, destiny shows up in the form of Desmond Kane. He opens her eyes to the life she was born to live, but even Guardians grow from the soil before blooming. Thrust into a secret world of good versus evil, Evania must prepare her body for battle and learn to embrace the possible in a world of impossible.

Supernova (Supernova Saga Book 1)

Supernova (Supernova Saga Book 1)
by The Writer's Coffee Shop

"I HIGHLY, HIGHLY recommend this book. HIGHLY. I can’t say the word HIGHLY enough. Because that’s how much I loved it."
Grace, Books Like Breathing

"It's absolutely out of this world."

"Supernova is a fun mix of genres; paranormal, romance, action, adventure, and comedy!"
Maria, To Read, Perchance to Dream

Summary of Supernova:

As part of a chosen bloodline, Kerrigan Cruz has inherited a gift: supernatural powers which give her the ability to protect a person’s free will from those who wish to alter destiny for their own design. After her grandmother’s passing, Kerrigan meets Dominic Grayson, an alluring stranger with a secret of his own. Dominic has been...


by Some Sharp Words

On Cleo’s first day at St. Aloysius Gonzaga Academy, things get pretty weird pretty fast. After being confronted by a strangely hostile boy, she meets two girls and instantly bonds with them. Before long danger threatens the entire student body, in the form of a soul eating possessor fae. When her brother is savagely beaten and left in a coma, the girls decide to use their fae powers to become superheroes and stop the possessions.

They quickly learn things are a lot more complicated than they had ever imagined. A government plot that had begun when they were infants endangers them all, and a demented former soldier bent on revenge is after them. The line between friend and foe has become so blurry, Cleo has no idea who she can trust. Will their superhero plot help them...

Simpsons Comics Supernova

Simpsons Comics Supernova
by Matt Groening (Author)

Not even the white-hot intensity of a thousand suns can hold a candle to Simpsons Comics Supernova, the new comic collection from Matt Groening, the creator of The Simpsons, Futurama, and the comic strip Life in Hell.Illustrated in full color, Simpsons Comics Supernova features many of the regular characters from the longest-running sitcom in television history. Explore the intimate relationship of a man and his sofa, when Homer refuses to be parted from his beloved love seat for a whole year. Then something is Huey, Dewey, Louie, and screwy when Mr. Burns takes the Simpsons on a South Seas adventure in search of lost treasure. Watch Marge eclipse the hard-nosed newscaster Kent Brockman with her eternally optimistic worldview. And when Duffman trades in his six-packs and party mobile for...

The Supernova Story

The Supernova Story
by Laurence Marschall (Author)

Astronomers believe that a supernova is a massive explosion signaling the death of a star, causing a cosmic recycling of the chemical elements and leaving behind a pulsar, black hole, or nothing at all. In an engaging story of the life cycles of stars, Laurence Marschall tells how early astronomers identified supernovae, and how later scientists came to their current understanding, piecing together observations and historical accounts to form a theory, which was tested by intensive study of SN 1987A, the brightest supernova since 1006. He has revised and updated The Supernova Story to include all the latest developments concerning SN 1987A, which astronomers still watch for possible aftershocks, as well as SN 1993J, the spectacular new event in the cosmic laboratory.

  Supernova: The Violent Death of a Star
by Donald Goldsmith (Author)

Nearly 160,000 years ago, a star in the Large Magellanic Cloud (a galaxy close to our own Milky Way) erupted in a majestic, violent death. Traveling at the speed of light, the radiation from this explosion reached Earth on February 23, 1987. The brightest supernova seen in four centuries, it was one of the most significant discoveries of twentieth-century astronomy.
The saga of Supernova "1987A" began with a once-in-a-lifetime observation by a lone astronomer in the Andes mountains. Astronomers soon found that the death throes of a far-off sun had yielded a treasure trove of information. This lucid, fascinating account by one of today's leading writers on astronomy details the results these astronomers obtained and the basic conclusions they drew.
The story that Donald...

X-Men: Supernovas

X-Men: Supernovas
by Mike Carey (Author), Chris Bachalo (Illustrator), Humberto Ramos (Illustrator)

As old threats are still having their effects, new, more deadly threats emerge from the unlikeliest of places. Threats that spell doom for the X-Men. Plus: What could possibly strike terror into the heart of...Sabretooth?! And who are the Children of the Vault? Mike Carey (Ultimate Fantastic Four) and Chris Bachalo (Uncanny X-Men) take over X-Men, or at least what's left of them! Collects X-Men #188-199, Annual.

© 2014