Science Current Events | Science News |

Unraveling a Butterfly's Aerial Antics Could Help Builders of Bug-Size Flying Robots

February 03, 2012

To improve the next generation of insect-size flying machines, Johns Hopkins engineers have been aiming high-speed video cameras at some of the prettiest bugs on the planet. By figuring out how butterflies flutter among flowers with amazing grace and agility, the researchers hope to help small airborne robots mimic these maneuvers.

U.S. defense agencies, which have funded this research, are supporting the development of bug-size flyers to carry out reconnaissance, search-and-rescue and environmental monitoring missions without risking human lives. These devices are commonly called micro aerial vehicles or MAVs.

"For military missions in particular, these MAVs must be able to fly successfully through complex urban environments, where there can be tight spaces and turbulent gusts of wind," said Tiras Lin, a Whiting School of Engineering undergraduate who has been conducting the high-speed video research. "These flying robots will need to be able to turn quickly. But one area in which MAVs are lacking is maneuverability."

To address that shortcoming, Lin has been studying butterflies. "Flying insects are capable of performing a dazzling variety of flight maneuvers," he said. "In designing MAVs, we can learn a lot from flying insects."

Lin's research has been supervised by Rajat Mittal, a professor of mechanical engineering. "This research is important because it attempts to not only address issues related to bio-inspired design of MAVs, but it also explores fundamental questions in biology related to the limits and capabilities of flying insects," Mittal said.

To conduct this study, Lin has been using high-speed video to look at how changes in mass distribution associated with the wing flapping and body deformation of a flying insect help it engage in rapid aerial twists and turns. Lin, a junior mechanical engineering major from San Rafael, Calif., recently presented some of his findings at the annual meeting of the American Physical Society's Division of Fluid Dynamics. The student also won second-prize for his presentation of this research at a regional meeting of the American Institute of Aeronautics and Astronautics.

"Ice skaters who want to spin faster bring their arms in close to their bodies and extend their arms out when they want to slow down," Lin said. "These positions change the spatial distribution of a skater's mass and modify their moment of inertia; this in turn affects the rotation of the skater's body. An insect may be able to do the same thing with its body and wings."

Butterflies move too quickly for someone to see these wing tactics clearly with the naked eye, so Lin, working with graduate student Lingxiao Zheng, used high-speed, high-resolution videogrammetry to mathematically document the trajectory and body conformation of painted lady butterflies. They accomplished this with three video cameras capable of recording 3,000 one-megapixel images per second. (By comparison, a standard video camera shoots 24, 30 or 60 frames per second.)

The Johns Hopkins researchers anchored their cameras in fixed positions and focused them on a small region within a dry transparent aquarium tank. For each analysis, several butterflies were released inside the tank. When a butterfly veered into the focal area, Lin switched on the cameras for about two seconds, collecting approximately 6,000 three-dimensional views of the insect's flight maneuvers. From these frames, the student typically homed in on roughly one-fifth of a second of flight, captured in 600 frames. "Butterflies flap their wings about 25 times per second," Lin said. "That's why we had to take so many pictures."

The arrangement of the three cameras allowed the researchers to capture three-dimensional data and analyze the movement of the insects' wings and bodies in minute detail. That led to a key discovery.

Earlier published research pointed out that an insect's delicate wings possess very little mass compared to the bug's body. As a result, those scholars concluded that changes in spatial distribution of mass associated with wing-flapping did not need to be considered in analyzing an insect's flight maneuverability and stability. "We found out that this commonly accepted assumption was not valid, at least for insects such as butterflies," Lin said. "We learned that changes in moment of inertia, which is a property associated with mass distribution, plays an important role in insect flight, just as arm and leg motion does for ice skaters and divers."

He said this discovery should be considered by MAV designers and may be useful to biologists who study insect flight dynamics.

Lin's newest project involves even smaller bugs. With support from a Johns Hopkins Provost's Undergraduate Research Award, he has begun aiming his video cameras at fruit flies, hoping to solve the mystery of how these insects manage to land upside down on perches.

The insect flight dynamics research was funded by the U.S. Air Force Office of Scientific Research and the National Science Foundation.

Johns Hopkins University

Related Butterflies Current Events and Butterflies News Articles

A hairy situation: Hair increases surface area for animals by 100 times
Georgia Institute of Technology researchers combed through more than two dozen studies and did surface measurements for 27 mammals and insects to better understand how animals are able to clean themselves.

Wing structure helps female monarch butterflies outperform males in flight
Evidence has been mounting that female monarch butterflies are better at flying and more successful at migration than males, and researchers from the University of Georgia have now come up with an explanation--but not one they expected.

Public Release: 30-Oct-2015 Some like it hot: Moth and butterfly species respond differently to climate change
New research led by ecologists at the University of York shows that certain species of moths and butterflies are becoming more common, and others rarer, as species differ in how they respond to climate change.

High-arctic butterflies shrink with rising temperatures
New research shows that butterflies in Greenland have become smaller in response to increasing temperatures due to climate change.

Color-coding sensor: Nanostructures for contactless control
Chemists at Ludwig-Maximilians-Univeristaet (LMU) in Munich have fabricated a novel nanosheet-based photonic crystal that changes color in response to moisture. The new material could form the basis for humidity-sensitive contactless control of interactive screens on digital devices.

Maternal experience brings an evolutionary advantage
Using a species of butterfly as an example, researchers from the Department of Environmental Sciences at the University of Basel have demonstrated how insects adapt their offspring to changing environmental conditions.

Naturally occurring 'GM' butterflies produced by gene transfer of wasp-associated viruses
Research teams from the University of Valencia and the University of Tours have discovered that genes originating from parasitic wasps are present in the genomes of many butterflies.

Family tree for orchids explains their astonishing variability
Orchids, a fantastically complicated and diverse group of flowering plants, have long blended the exotic with the beautiful.

Severe droughts could lead to widespread losses of butterflies by 2050
Widespread drought-sensitive butterfly population extinctions could occur in the UK as early as 2050 according to a new study published today in the scientific journal Nature Climate Change.

Genetic study of 'co-evolution' could provide clues to better food production
In 1964, renowned biologists Peter Raven and Paul Erhlich published a landmark study that introduced the concept of co-evolution.
More Butterflies Current Events and Butterflies News Articles


by Ron Orenstein (Author), Thomas Marent (Photographer)

Here are some of the most colorful, spectacular and sometimes weird examples of the world's butterflies and moths. From the common swallowtail to the iridescent blue morpho, Thomas Marent's stunning photographs provide a close-up view of the remarkable family of insects known as Lepidoptera. The macro photography complements the enlightening text written by zoologist Ronald Orenstein, who explains the scientific curiosities of these amazing insects. He makes clear how to differentiate between butterflies and moths; how caterpillars camouflage themselves; and how their feeding strategies and evolutionary adaptations help them prevail in the wild. Examples include such seldom-seen species as the green dragontail (Indonesia), Mexican kite-swallowtail (Costa Rica), the alpine black...


by Seymour Simon (Author)

Butterflies are beautiful, inspiring, amazing insects. Did you know that butterflies . . .have eyes that can look in all directions—up, down, forward, backward, left, and right—all at the same time?taste with their feet?can migrate 3,000 miles every year?Award-winning science writer Seymour Simon invites readers to explore the world of butterflies and moths with fascinating facts and stunning full-color photographs.Learn where to find butterflies and moths, how to observe them in nature, and how to plant your very own butterfly garden!

Butterflies of North America (Kaufman Field Guides)

Butterflies of North America (Kaufman Field Guides)
by Jim P. Brock (Author), Kenn Kaufman (Author), Kenn Kaufman (Editor)

The most user-friendly butterfly guide ever published, still handy and compact, now updated with the very latest information

- Follows the latest classification, recognizing more than forty additional species

- Includes four new color plates of Mexican-border rarities

- More than 2,300 images of butterflies in natural poses

- Pictorial table of contents

- Convenient one-page index

- Range maps on text pages

My, Oh My--A Butterfly!: All About Butterflies (Cat in the Hat's Learning Library)

My, Oh My--A Butterfly!: All About Butterflies (Cat in the Hat's Learning Library)
by Tish Rabe (Author), Aristides Ruiz (Illustrator), Joe Mathieu (Illustrator)

With a little help from the Cat in the Hat, Sally and Dick observe a small miracle in their own backyard—the metamorphosis of an egg into a caterpillar into a chrysalis into a bright new butterfly! Along the way, beginning readers will find out how butterflies see thousands of images at once, drink nectar from flowers, avoid predators, and can be identified by size, shape, and color. Readers will also follow the amazing migration of millions of monarchs.

National Geographic Readers: Caterpillar to Butterfly

National Geographic Readers: Caterpillar to Butterfly
by Laura Marsh (Author)

Butterflies are all around us. It's hard to believe these majestic insects with impressive wingspans and beautifully colored and patterned wings were once creepy crawly caterpillars. How in the world does this transformation happen? This Level 1 Reader gives kids an up-close look at exactly how a caterpillar becomes a butterfly. With bonus information including different types of butterflies and poisonous caterpillars, this reader is one of a kind.

This high-interest, educationally vetted series of beginning readers features the magnificent images of National Geographic, accompanied by texts written by experienced, skilled children's book authors.

The inside back cover of the paperback edition is an interactive feature based upon the book. Level 1 books reinforce the content...

The Illustrated World Encyclopedia of Butterflies and Moths: A Natural History and Identification Guide

The Illustrated World Encyclopedia of Butterflies and Moths: A Natural History and Identification Guide
by Sally Morgan (Author)

Adored for their beauty and variety, butterflies and moths captivate nature enthusiasts all over the world. Yet these exquisite insects, which comprise the animal grouping Lepidoptera, are not only attractive to watch but are of immense biological importance.

One Hundred Butterflies

One Hundred Butterflies
by Harold Feinstein (Photographer), Fred Gagnon (Photographer)

In One Hundred Butterflies, photographer Harold Feinstein showcases butterfly varieties from around the world, turning exquisite details into mesmerizing works of art. Feinstein's breathtaking photographs capture the color, vibrancy, and infinite variety of patterns that occur on the wings of these ornate insects. One hundred impeccably reproduced, oversized photographs allow viewers to appreciate the Blue Morpho of Central America, the African Birdwing, and the Asian Swallowtail at a scale and depth impossible to experience in nature. An elegantly printed deluxe gift book, it is a treasure for butterfly enthusiasts and art lovers alike.

Butterfly Notebook

Butterfly Notebook
by Sovak (Author)

Beautiful butterflies grace the covers of this handy 64-page blank notebook, perfect for holding addresses, phone and fax numbers, or just personal thoughts.

A World Of Butterflies

A World Of Butterflies
by Kjell Sandved (Author), Brian Cassie (Author), Robert Michael Pyle (Contributor)

Butterfly enthusiasts will delight in the 200 vivid images from across the globe, accompanied by informative and engaging text from preeminent writers in the field.

© 2015