Science Current Events | Science News | Brightsurf.com
 

Nuclear power plants can produce hydrogen to fuel the 'hydrogen economy'

March 26, 2012

The long-sought technology for enabling the fabled "hydrogen economy" - an era based on hydrogen fuel that replaces gasoline, diesel and other fossil fuels, easing concerns about foreign oil and air pollution - has been available for decades and could begin commercial production of hydrogen in this decade, a scientist reported here today.

Speaking at the 243rd National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society, Ibrahim Khamis, Ph.D., described how heat from existing nuclear plants could be used in the more economical production of hydrogen, with future plants custom-built for hydrogen production. He is with the International Atomic Energy Agency (IAEA) in Vienna, Austria.

"There is rapidly growing interest around the world in hydrogen production using nuclear power plants as heat sources," Khamis said. "Hydrogen production using nuclear energy could reduce dependence on oil for fueling motor vehicles and the use of coal for generating electricity. In doing so, hydrogen could have a beneficial impact on global warming, since burning hydrogen releases only water vapor and no carbon dioxide, the main greenhouse gas. There is a dramatic reduction in pollution."

Khamis said scientists and economists at IAEA and elsewhere are working intensively to determine how current nuclear power reactors - 435 are operational worldwide - and future nuclear power reactors could be enlisted in hydrogen production.

Most hydrogen production at present comes from natural gas or coal and results in releases of the greenhouse gas carbon dioxide. On a much smaller scale, some production comes from a cleaner process called electrolysis, in which an electric current flowing through water splits the H2O molecules into hydrogen and oxygen. This process, termed electrolysis, is more efficient and less expensive if water is first heated to form steam, with the electric current passed through the steam.

Khamis said that nuclear power plants are ideal for hydrogen production because they already produce the heat for changing water into steam and the electricity for breaking the steam down into hydrogen and oxygen. Experts envision the current generation of nuclear power plants using a low-temperature electrolysis which can take advantage of low electricity prices during the plant's off-peak hours to produce hydrogen. Future plants, designed specifically for hydrogen production, would use a more efficient high-temperature electrolysis process or be coupled to thermochemical processes, which are currently under research and development.

"Nuclear hydrogen from electrolysis of water or steam is a reality now, yet the economics need to be improved," said Khamis. He noted that some countries are considering construction of new nuclear plants coupled with high-temperature steam electrolysis (HTSE) stations that would allow them to generate hydrogen gas on a large scale in anticipation of growing economic opportunities.

Khamis described how IAEA's Hydrogen Economic Evaluation Programme (HEEP) is helping. IAEA has designed its HEEP software to help its member states take advantage of nuclear energy's potential to generate hydrogen gas. The software assesses the technical and economic feasibility of hydrogen production under a wide variety of circumstances.

American Chemical Society


Related Hydrogen Production Current Events and Hydrogen Production News Articles


Carbon leads the way in clean energy
Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene
Fuel cells convert the chemical energy stored in hydrogen (H2) into electrical energy by electrochemically "combusting" hydrogen gas with oxygen (O2) from the air into water (H2O), thereby generating electricity.

Fuel cell advance
"Planes, Trains and Automobiles" is a popular comedy from the 1980s, but there's nothing funny about the amount of energy consumed by our nation's transportation sector.

IU scientists create 'nano-reactor' for the production of hydrogen biofuel
Scientists at Indiana University have created a highly efficient biomaterial that catalyzes the formation of hydrogen -- one half of the "holy grail" of splitting H2O to make hydrogen and oxygen for fueling cheap and efficient cars that run on water.

'Hydricity' concept uses solar energy to produce power round-the-clock
Researchers are proposing a new "hydricity" concept aimed at creating a sustainable economy by not only generating electricity with solar energy but also producing and storing hydrogen from superheated water for round-the-clock power production.

NREL research advances understanding of photoelectrodes
Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) have developed a new probe that could lead to a better photoelectrochemical cell.

Crack it! Energy from a fossil fuel without carbon dioxide
The production of energy from natural gas without generating carbon dioxide emissions could fast become a reality, thanks to a novel technology developed by researchers of the Institute for Advanced Sustainability Studies (IASS) in Potsdam and the Karlsruhe Institute of Technology (KIT).

Dirt-cheap catalyst may lower fuel costs for hydrogen-powered cars
-Sandia National Laboratories researchers seeking to make hydrogen a less expensive fuel for cars have upgraded a catalyst nearly as cheap as dirt -- molybdenum disulfide, "molly" for short -- to stand in for platinum, a rare element with the moonlike price of $1,500 a gram.

Making hydrogen fuel from water and visible light highly efficient
Mimicking photosynthesis is not easy. The bottleneck of artificial photosynthesis is visible light as converting it into other energy is not efficient.

New method can make cheaper solar energy storage
Storing solar energy as hydrogen is a promising way for developing comprehensive renewable energy systems.
More Hydrogen Production Current Events and Hydrogen Production News Articles

Hydrogen Production: by Electrolysis

Hydrogen Production: by Electrolysis
by Agata Godula-Jopek (Editor), Detlef Stolten (Editor)


Covering the various aspects of this fast-evolving field, this comprehensive book includes the fundamentals and a comparison of current applications, while focusing on the latest, novel achievements and future directions.
The introductory chapters explore the thermodynamic and electrochemical processes to better understand how electrolysis cells work, and how these can be combined to build large electrolysis modules. The book then goes on to discuss the electrolysis process and the characteristics, advantages, drawbacks, and challenges of the main existing electrolysis technologies. Current manufacturers and the main features of commercially available electrolyzers are extensively reviewed. The final chapters then present the possible configurations for integrating water electrolysis...

Sustainable Hydrogen Production

Sustainable Hydrogen Production
by Ibrahim Dincer (Author), Calin Zamfirescu (Author)


Sustainable Hydrogen Production provides readers with an introduction to the processes and technologies used in major hydrogen production methods. This book serves as a unique source for information on advanced hydrogen generation systems and applications (including integrated systems, hybrid systems, and multigeneration systems with hydrogen production). Advanced and clean technologies are linked to environmental impact issues, and methods for sustainable development are thoroughly discussed. With Earth’s fast-growing populations, we face the challenge of rapidly rising energy needs. To balance these we must explore more sustainable methods of energy production. Hydrogen is one key sustainable method because of its versatility. It is a constituent of a large palette of essential...

Sustainable Hydrogen Production Processes: Energy, Economic and Ecological Issues (Green Energy and Technology)

Sustainable Hydrogen Production Processes: Energy, Economic and Ecological Issues (Green Energy and Technology)
by José Luz Silveira (Editor)


This work presents a comprehensive investigation of the most significant renewable hydrogen production processes. Technical, economic and ecological studies are described for the processes of steam reforming of ethanol, natural gas and biogas; water electrolysis with energy from renewable sources (wind power, photovoltaic and hydroelectric), and hydrogen production using algae. Aimed at mechanical and chemical engineering graduate students and researchers involved in environmental sciences, sustainable energy and bioenergy research, this book introduces readers to the latest developments in the field and provides essential reference material for future research. The book first presents a comprehensive literature review of the processes studied. Subsequently, it provides a technical report...

PEM Electrolysis for Hydrogen Production: Principles and Applications

PEM Electrolysis for Hydrogen Production: Principles and Applications
by Dmitri Bessarabov (Editor), Haijiang Wang (Editor), Hui Li (Editor), Nana Zhao (Editor)


An ever-increasing dependence on green energy has brought on a renewed interest in polymer electrolyte membrane (PEM) electrolysis as a viable solution for hydrogen production. While alkaline water electrolyzers have been used in the production of hydrogen for many years, there are certain advantages associated with PEM electrolysis and its relevance to renewable energy sources. PEM Electrolysis for Hydrogen Production: Principles and Applications discusses the advantages of PEM electrolyzers over alkaline electrolyzers, presents the recent advances of hydrogen PEM fuel cells accelerating the large-scale commercialization of PEM electrolysis, and considers the challenges that must be addressed before PEM electrolysis can become a commercially feasible option. Written by international...

Build A Solar Hydrogen Fuel Cell System

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)


Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology. Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including: ESPMs (Electrolyzer Specific Photovoltaic Modules) – 40 watt solar panels designed specifically to run electrolyzers efficiently; a 40-80 watt electrolyzer for intermittant power from renewable energy sources such as solar and wind; and, a 6-12...

Welcome to the Universe: An Astrophysical Tour

Welcome to the Universe: An Astrophysical Tour
by Neil deGrasse Tyson (Author), Michael A. Strauss (Author), J. Richard Gott (Author)


Welcome to the Universe is a personal guided tour of the cosmos by three of today's leading astrophysicists. Inspired by the enormously popular introductory astronomy course that Neil deGrasse Tyson, Michael A. Strauss, and J. Richard Gott taught together at Princeton, this book covers it all--from planets, stars, and galaxies to black holes, wormholes, and time travel.Describing the latest discoveries in astrophysics, the informative and entertaining narrative propels you from our home solar system to the outermost frontiers of space. How do stars live and die? Why did Pluto lose its planetary status? What are the prospects of intelligent life elsewhere in the universe? How did the universe begin? Why is it expanding and why is its expansion accelerating? Is our universe alone or part of...

Dark Sun: The Making of the Hydrogen Bomb

Dark Sun: The Making of the Hydrogen Bomb
by Richard Rhodes (Author)


Here, for the first time, in a brilliant, panoramic portrait by the Pulitzer Prize-winning author of The Making of the Atomic Bomb, is the definitive, often shocking story of the politics and the science behind the development of the hydrogen bomb and the birth of the Cold War.

Based on secret files in the United States and the former Soviet Union, this monumental work of history discloses how and why the United States decided to create the bomb that would dominate world politics for more than forty years.

Hydrogen Peroxide: Medical Miracle

Hydrogen Peroxide: Medical Miracle
by William Campbell Douglass II (Author)


'Less is more' when it comes to the small molecule hydrogen peroxide - H2O2 - and the role it plays in maintaining health and fighting diseases. Discover how the miraculous healing agent works, why it's a 'natural' and 'bio-identical' substance, and it's multiple medical applications.

The Magic of Hydrogen Peroxide

The Magic of Hydrogen Peroxide
by Emily Thacker (Author)


An Ounce of Hydrogen Peroxide is Worth a Pound of Cure Hydrogen peroxide is trusted by every hospital and emergency room in the country for its remarkable ability to kill deadly germs like E. coli and the swine flu virus. In fact, it has attracted so much interest from doctors that over 6000 articles about it have appeared in scientific publications around the world. Research has discovered that hydrogen peroxide enables your immune system to function properly and fight infection and disease. Doctors have found it can shrink tumors and treat allergies, Alzheimer’s, asthma, clogged arteries, diabetes, digestive problems and migraine headaches. Smart consumers nationwide are also discovering there are hundreds of health cures and home remedy uses for hydrogen peroxide. A new book called...

Clean Hydrogen Production Methods (SpringerBriefs in Energy)

Clean Hydrogen Production Methods (SpringerBriefs in Energy)
by Sushant Kumar (Author)


This brief covers novel techniques for clean hydrogen production which primarily involve sodium hydroxide as an essential ingredient to the existing major hydrogen production technologies. Interestingly, sodium hydroxide plays different roles and can act as a catalyst, reactant, promoter or even a precursor. The inclusion of sodium hydroxide makes these processes both kinetically and thermodynamically favorable.  In addition possibilities to produce cleaner hydrogen, in terms of carbon emissions, are described. Through modifications of steam methane reformation methods and coal-gasification processes, from fossil as well as non-fossil energy sources, the carbon dioxide emissions of these established ways to produce hydrogen can significantly be reduced. This brief is aimed at those who...

© 2016 BrightSurf.com