Science Current Events | Science News |

Nuclear power plants can produce hydrogen to fuel the 'hydrogen economy'

March 26, 2012

The long-sought technology for enabling the fabled "hydrogen economy" - an era based on hydrogen fuel that replaces gasoline, diesel and other fossil fuels, easing concerns about foreign oil and air pollution - has been available for decades and could begin commercial production of hydrogen in this decade, a scientist reported here today.

Speaking at the 243rd National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society, Ibrahim Khamis, Ph.D., described how heat from existing nuclear plants could be used in the more economical production of hydrogen, with future plants custom-built for hydrogen production. He is with the International Atomic Energy Agency (IAEA) in Vienna, Austria.

"There is rapidly growing interest around the world in hydrogen production using nuclear power plants as heat sources," Khamis said. "Hydrogen production using nuclear energy could reduce dependence on oil for fueling motor vehicles and the use of coal for generating electricity. In doing so, hydrogen could have a beneficial impact on global warming, since burning hydrogen releases only water vapor and no carbon dioxide, the main greenhouse gas. There is a dramatic reduction in pollution."

Khamis said scientists and economists at IAEA and elsewhere are working intensively to determine how current nuclear power reactors - 435 are operational worldwide - and future nuclear power reactors could be enlisted in hydrogen production.

Most hydrogen production at present comes from natural gas or coal and results in releases of the greenhouse gas carbon dioxide. On a much smaller scale, some production comes from a cleaner process called electrolysis, in which an electric current flowing through water splits the H2O molecules into hydrogen and oxygen. This process, termed electrolysis, is more efficient and less expensive if water is first heated to form steam, with the electric current passed through the steam.

Khamis said that nuclear power plants are ideal for hydrogen production because they already produce the heat for changing water into steam and the electricity for breaking the steam down into hydrogen and oxygen. Experts envision the current generation of nuclear power plants using a low-temperature electrolysis which can take advantage of low electricity prices during the plant's off-peak hours to produce hydrogen. Future plants, designed specifically for hydrogen production, would use a more efficient high-temperature electrolysis process or be coupled to thermochemical processes, which are currently under research and development.

"Nuclear hydrogen from electrolysis of water or steam is a reality now, yet the economics need to be improved," said Khamis. He noted that some countries are considering construction of new nuclear plants coupled with high-temperature steam electrolysis (HTSE) stations that would allow them to generate hydrogen gas on a large scale in anticipation of growing economic opportunities.

Khamis described how IAEA's Hydrogen Economic Evaluation Programme (HEEP) is helping. IAEA has designed its HEEP software to help its member states take advantage of nuclear energy's potential to generate hydrogen gas. The software assesses the technical and economic feasibility of hydrogen production under a wide variety of circumstances.

American Chemical Society

Related Hydrogen Production Current Events and Hydrogen Production News Articles

Crack it! Energy from a fossil fuel without carbon dioxide
The production of energy from natural gas without generating carbon dioxide emissions could fast become a reality, thanks to a novel technology developed by researchers of the Institute for Advanced Sustainability Studies (IASS) in Potsdam and the Karlsruhe Institute of Technology (KIT).

Dirt-cheap catalyst may lower fuel costs for hydrogen-powered cars
-Sandia National Laboratories researchers seeking to make hydrogen a less expensive fuel for cars have upgraded a catalyst nearly as cheap as dirt -- molybdenum disulfide, "molly" for short -- to stand in for platinum, a rare element with the moonlike price of $1,500 a gram.

Making hydrogen fuel from water and visible light highly efficient
Mimicking photosynthesis is not easy. The bottleneck of artificial photosynthesis is visible light as converting it into other energy is not efficient.

New method can make cheaper solar energy storage
Storing solar energy as hydrogen is a promising way for developing comprehensive renewable energy systems.

Artificial photosynthesis: New, stable photocathode with great potential
Many of us are familiar with electrolytic splitting of water from their school days: if you hold two electrodes into an aqueous electrolyte and apply a sufficient voltage, gas bubbles of hydrogen and oxygen are formed.

Discovery by Virginia Tech may be breakthrough for hydrogen cars
A team of Virginia Tech researchers has discovered a way to create hydrogen fuel using a biological method that greatly reduces the time and money it takes to produce the zero-emissions fuel.

Electronic waste has energy value
Using discarded electronic boards, the UPV/EHU researcher Andoni Salbidegoitia has, in collaboration with international researchers, developed a system for obtaining clean hydrogen that can be used as fuel. The researchers have already registered the patent of the process in Japan.

Clean energy future: New cheap and efficient electrode for splitting water
UNSW Australia scientists have developed a highly efficient oxygen-producing electrode for splitting water that has the potential to be scaled up for industrial production of the clean energy fuel, hydrogen.

Researchers develop new approach that combines biomass conversion, solar energy conversion
In a study published March 9 in Nature Chemistry, University of Wisconsin-Madison chemistry Professor Kyoung-Shin Choi presents a new approach to combine solar energy conversion and biomass conversion, two important research areas for renewable energy.

Renewable energy obtained from wastewater
Currently, there are treatments in which wastewater can flow out to the river or sea without causing any environmental problems.
More Hydrogen Production Current Events and Hydrogen Production News Articles

Hydrogen Production: by Electrolysis

Hydrogen Production: by Electrolysis
by Agata Godula-Jopek (Author), Detlef Stolten (Foreword)

Covering the various aspects of this fast-evolving field, this comprehensive book includes the fundamentals and a comparison of current applications, while focusing on the latest, novel achievements and future directions.
The introductory chapters explore the thermodynamic and electrochemical processes to better understand how electrolysis cells work, and how these can be combined to build large electrolysis modules. The book then goes on to discuss the electrolysis process and the characteristics, advantages, drawbacks, and challenges of the main existing electrolysis technologies. Current manufacturers and the main features of commercially available electrolyzers are extensively reviewed. The final chapters then present the possible configurations for integrating water electrolysis...

Solar Based Hydrogen Production Systems (SpringerBriefs in Energy)

Solar Based Hydrogen Production Systems (SpringerBriefs in Energy)
by Ibrahim Dincer (Author), Anand S. Joshi (Author)

This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding of second law (exergy) efficiencies for various systems. It may serve as a reference book to the researchers in energy field. The definitions and concepts developed in the book will be explained...

Hydrogen and Syngas Production and Purification Technologies

Hydrogen and Syngas Production and Purification Technologies
by Ke Liu (Author), Chunshan Song (Author), Velu Subramani (Author)

Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications Serves as a resource for practicing researchers and as a text in graduate-level programs Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants Includes homework-style problems

Hydrogen Production from Nuclear Energy (Lecture Notes in Energy)

Hydrogen Production from Nuclear Energy (Lecture Notes in Energy)
by Greg F Naterer (Author), Ibrahim Dincer (Author), Calin Zamfirescu (Author)

With the resurgence of nuclear power around the world, and the increasingly important role of hydrogen as a clean energy carrier, the utilization of nuclear energy for large-scale hydrogen production will have a key role in a sustainable energy future. Co-generation of both electricity and hydrogen from nuclear plants will become increasingly attractive. It enables load leveling together with renewable energy and storage of electricity in the form of hydrogen, when electricity prices and demand are lowest at off-peak hours of nuclear plants, such as overnight. Hydrogen Production from Nuclear Energy provides an overview of the latest developments and methods of nuclear based hydrogen production, including electrolysis and thermochemical cycles. Particular focus is given to thermochemical...

Build A Solar Hydrogen Fuel Cell System

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)

Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology. Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including: ESPMs (Electrolyzer Specific Photovoltaic Modules) – 40 watt solar panels designed specifically to run electrolyzers efficiently; a 40-80 watt electrolyzer for intermittant power from renewable energy sources such as solar and wind; and, a 6-12...

Hydrogen Fuel: Production, Transport, and Storage

Hydrogen Fuel: Production, Transport, and Storage
by Ram B. Gupta (Editor)

From Methane to Hydrogen—Making the Switch to a Cleaner Fuel Source The world’s overdependence on fossil fuels has created environmental problems, such as air pollution and global warming, as well as political and economic unrest. With water as its only by-product and its availability in all parts of the world, hydrogen promises to be the next great fuel source. All of the Key Aspects of Hydrogen Fuel Hydrogen Fuel: Production, Transport, and Storage describes various aspects of hydrogen fuel, including production from both renewable and nonrenewable sources, purification, storage, transport, safety, codes, and carbon dioxide sequestration. The book examines the unique properties and uses of the hydrogen molecule, its ability to be produced from numerous energy sources, and its...

PEM Electrolysis for Hydrogen Production: Principles and Applications

PEM Electrolysis for Hydrogen Production: Principles and Applications
by Dmitri Bessarabov (Editor), Haijiang Wang (Editor), Hui Li (Editor), Nana Zhao (Editor)

An ever-increasing dependence on green energy has brought on a renewed interest in polymer electrolyte membrane (PEM) electrolysis as a viable solution for hydrogen production. While alkaline water electrolyzers have been used in the production of hydrogen for many years, there are certain advantages associated with PEM electrolysis and its relevance to renewable energy sources. PEM Electrolysis for Hydrogen Production: Principles and Applications discusses the advantages of PEM electrolyzers over alkaline electrolyzers, presents the recent advances of hydrogen PEM fuel cells accelerating the large-scale commercialization of PEM electrolysis, and considers the challenges that must be addressed before PEM electrolysis can become a commercially feasible option. Written by international...

The Magic of Hydrogen Peroxide

The Magic of Hydrogen Peroxide
by Emily Thacker (Author)

An Ounce of Hydrogen Peroxide is Worth a Pound of Cure Hydrogen peroxide is trusted by every hospital and emergency room in the country for its remarkable ability to kill deadly germs like E. coli and the swine flu virus. In fact, it has attracted so much interest from doctors that over 6000 articles about it have appeared in scientific publications around the world. Research has discovered that hydrogen peroxide enables your immune system to function properly and fight infection and disease. Doctors have found it can shrink tumors and treat allergies, Alzheimer’s, asthma, clogged arteries, diabetes, digestive problems and migraine headaches. Smart consumers nationwide are also discovering there are hundreds of health cures and home remedy uses for hydrogen peroxide. A new book called...

Hydrogen Peroxide: Medical Miracle

Hydrogen Peroxide: Medical Miracle
by William Campbell Douglass II (Author)

'Less is more' when it comes to the small molecule hydrogen peroxide - H2O2 - and the role it plays in maintaining health and fighting diseases. Discover how the miraculous healing agent works, why it's a 'natural' and 'bio-identical' substance, and it's multiple medical applications.

Photoelectrochemical Hydrogen Production (Electronic Materials: Science & Technology)

Photoelectrochemical Hydrogen Production (Electronic Materials: Science & Technology)
by Roel van de Krol (Editor), Michael Grätzel (Editor)

Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions...

© 2015