Science Current Events | Science News |

Nuclear power plants can produce hydrogen to fuel the 'hydrogen economy'

March 26, 2012

The long-sought technology for enabling the fabled "hydrogen economy" - an era based on hydrogen fuel that replaces gasoline, diesel and other fossil fuels, easing concerns about foreign oil and air pollution - has been available for decades and could begin commercial production of hydrogen in this decade, a scientist reported here today.

Speaking at the 243rd National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society, Ibrahim Khamis, Ph.D., described how heat from existing nuclear plants could be used in the more economical production of hydrogen, with future plants custom-built for hydrogen production. He is with the International Atomic Energy Agency (IAEA) in Vienna, Austria.

"There is rapidly growing interest around the world in hydrogen production using nuclear power plants as heat sources," Khamis said. "Hydrogen production using nuclear energy could reduce dependence on oil for fueling motor vehicles and the use of coal for generating electricity. In doing so, hydrogen could have a beneficial impact on global warming, since burning hydrogen releases only water vapor and no carbon dioxide, the main greenhouse gas. There is a dramatic reduction in pollution."

Khamis said scientists and economists at IAEA and elsewhere are working intensively to determine how current nuclear power reactors - 435 are operational worldwide - and future nuclear power reactors could be enlisted in hydrogen production.

Most hydrogen production at present comes from natural gas or coal and results in releases of the greenhouse gas carbon dioxide. On a much smaller scale, some production comes from a cleaner process called electrolysis, in which an electric current flowing through water splits the H2O molecules into hydrogen and oxygen. This process, termed electrolysis, is more efficient and less expensive if water is first heated to form steam, with the electric current passed through the steam.

Khamis said that nuclear power plants are ideal for hydrogen production because they already produce the heat for changing water into steam and the electricity for breaking the steam down into hydrogen and oxygen. Experts envision the current generation of nuclear power plants using a low-temperature electrolysis which can take advantage of low electricity prices during the plant's off-peak hours to produce hydrogen. Future plants, designed specifically for hydrogen production, would use a more efficient high-temperature electrolysis process or be coupled to thermochemical processes, which are currently under research and development.

"Nuclear hydrogen from electrolysis of water or steam is a reality now, yet the economics need to be improved," said Khamis. He noted that some countries are considering construction of new nuclear plants coupled with high-temperature steam electrolysis (HTSE) stations that would allow them to generate hydrogen gas on a large scale in anticipation of growing economic opportunities.

Khamis described how IAEA's Hydrogen Economic Evaluation Programme (HEEP) is helping. IAEA has designed its HEEP software to help its member states take advantage of nuclear energy's potential to generate hydrogen gas. The software assesses the technical and economic feasibility of hydrogen production under a wide variety of circumstances.

American Chemical Society

Related Hydrogen Production Current Events and Hydrogen Production News Articles

Carbon leads the way in clean energy
Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene
Fuel cells convert the chemical energy stored in hydrogen (H2) into electrical energy by electrochemically "combusting" hydrogen gas with oxygen (O2) from the air into water (H2O), thereby generating electricity.

Fuel cell advance
"Planes, Trains and Automobiles" is a popular comedy from the 1980s, but there's nothing funny about the amount of energy consumed by our nation's transportation sector.

IU scientists create 'nano-reactor' for the production of hydrogen biofuel
Scientists at Indiana University have created a highly efficient biomaterial that catalyzes the formation of hydrogen -- one half of the "holy grail" of splitting H2O to make hydrogen and oxygen for fueling cheap and efficient cars that run on water.

'Hydricity' concept uses solar energy to produce power round-the-clock
Researchers are proposing a new "hydricity" concept aimed at creating a sustainable economy by not only generating electricity with solar energy but also producing and storing hydrogen from superheated water for round-the-clock power production.

NREL research advances understanding of photoelectrodes
Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) have developed a new probe that could lead to a better photoelectrochemical cell.

Crack it! Energy from a fossil fuel without carbon dioxide
The production of energy from natural gas without generating carbon dioxide emissions could fast become a reality, thanks to a novel technology developed by researchers of the Institute for Advanced Sustainability Studies (IASS) in Potsdam and the Karlsruhe Institute of Technology (KIT).

Dirt-cheap catalyst may lower fuel costs for hydrogen-powered cars
-Sandia National Laboratories researchers seeking to make hydrogen a less expensive fuel for cars have upgraded a catalyst nearly as cheap as dirt -- molybdenum disulfide, "molly" for short -- to stand in for platinum, a rare element with the moonlike price of $1,500 a gram.

Making hydrogen fuel from water and visible light highly efficient
Mimicking photosynthesis is not easy. The bottleneck of artificial photosynthesis is visible light as converting it into other energy is not efficient.

New method can make cheaper solar energy storage
Storing solar energy as hydrogen is a promising way for developing comprehensive renewable energy systems.
More Hydrogen Production Current Events and Hydrogen Production News Articles

Hydrogen Fuel: Production, Transport, and Storage

Hydrogen Fuel: Production, Transport, and Storage
by Ram B. Gupta (Editor)

From Methane to Hydrogen―Making the Switch to a Cleaner Fuel Source The world’s overdependence on fossil fuels has created environmental problems, such as air pollution and global warming, as well as political and economic unrest. With water as its only by-product and its availability in all parts of the world, hydrogen promises to be the next great fuel source. All of the Key Aspects of Hydrogen Fuel Hydrogen Fuel: Production, Transport, and Storage describes various aspects of hydrogen fuel, including production from both renewable and nonrenewable sources, purification, storage, transport, safety, codes, and carbon dioxide sequestration. The book examines the unique properties and uses of the hydrogen molecule, its ability to be produced from numerous energy sources, and its...

Printable Solar Cells (Advances in Hydrogen Production and Storage (AHPS))

Printable Solar Cells (Advances in Hydrogen Production and Storage (AHPS))
by Nurdan Demirci Sankir (Editor), Mehmet Sankir (Editor)

This book provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of the Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV.

Hydrogen Production Technologies (Advances in Hydrogen Production and Storage (AHPS))

Hydrogen Production Technologies (Advances in Hydrogen Production and Storage (AHPS))
by Mehmet Sankir (Author), Nurdan Demirci Sankir (Author)

The book is organized in three parts.  Part I shows how the catalytic and electrochemical principles involve hydrogen production technologies. Part II is devoted to biohydrogen production and introduces gasification and fast pyrolysis biomass, dark fermentation, microbial electrolysis and power production from algae. The last part of the book is concerned with the photo hydrogen generation technologies. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal-free semiconductors based nanomaterials for photocatalytic hydrogen production are extensively discussed in this part.

Hydrogen Production: by Electrolysis

Hydrogen Production: by Electrolysis
by Agata Godula-Jopek (Editor), Detlef Stolten (Editor)

Covering the various aspects of this fast-evolving field, this comprehensive book includes the fundamentals and a comparison of current applications, while focusing on the latest, novel achievements and future directions.
The introductory chapters explore the thermodynamic and electrochemical processes to better understand how electrolysis cells work, and how these can be combined to build large electrolysis modules. The book then goes on to discuss the electrolysis process and the characteristics, advantages, drawbacks, and challenges of the main existing electrolysis technologies. Current manufacturers and the main features of commercially available electrolyzers are extensively reviewed. The final chapters then present the possible configurations for integrating water electrolysis...

Hydrogen production with offshore wind and sea water electrolysis: Capitalizing Norways offshore wind potential

Hydrogen production with offshore wind and sea water electrolysis: Capitalizing Norways offshore wind potential
by Konrad Meier (Author)

Jules Verne, The Mysterious Island, 1874: "Yes, my friends, I believe that water will one day be employed as fuel, that hydrogen and oxygen which constitute it, used singly or together, will furnish an inexhaustible source of heat and light, of an intensity of which coal is not capable." -- -- -- -- What if there was a way to capitalize Norways offshore wind potential while becoming one of the largest producers of the fuel of the future - hydrogen? This study elaborates the idea of offshore hydrogen production platforms that could be used to produce hydrogen from offshore wind. Norway is one of the largest producers of fossil fuels and a clean energy pioneer. As the Norwegian energy demand can be covered with hydropower, there is no need to capitalize offshore wind potentials - unless...

Build A Solar Hydrogen Fuel Cell System

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)

Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology. Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including: ESPMs (Electrolyzer Specific Photovoltaic Modules) – 40 watt solar panels designed specifically to run electrolyzers efficiently; a 40-80 watt electrolyzer for intermittant power from renewable energy sources such as solar and wind; and, a 6-12...

Hydrogen Production and Remediation of Carbon and Pollutants

Hydrogen Production and Remediation of Carbon and Pollutants
by Eric Lichtfouse (Editor), Jan Schwarzbauer (Editor), Didier Robert (Editor)

Clean Hydrogen Production Methods (SpringerBriefs in Energy)

Clean Hydrogen Production Methods (SpringerBriefs in Energy)
by Sushant Kumar (Author)

This brief covers novel techniques for clean hydrogen production which primarily involve sodium hydroxide as an essential ingredient to the existing major hydrogen production technologies. Interestingly, sodium hydroxide plays different roles and can act as a catalyst, reactant, promoter or even a precursor. The inclusion of sodium hydroxide makes these processes both kinetically and thermodynamically favorable.  In addition possibilities to produce cleaner hydrogen, in terms of carbon emissions, are described. Through modifications of steam methane reformation methods and coal-gasification processes, from fossil as well as non-fossil energy sources, the carbon dioxide emissions of these established ways to produce hydrogen can significantly be reduced. This brief is aimed at those who...

Photoelectrochemical Hydrogen Production (Electronic Materials: Science & Technology)

Photoelectrochemical Hydrogen Production (Electronic Materials: Science & Technology)
by Roel van de Krol (Editor), Michael Grätzel (Editor)

Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions...

The 2018-2023 World Outlook for Hydrogen Production and Storage Technologies

The 2018-2023 World Outlook for Hydrogen Production and Storage Technologies
by Icon Group International (Author)

This study covers the world outlook for hydrogen production and storage technologies across more than 190 countries. For each year reported, estimates are given for the latent demand, or potential industry earnings (P.I.E.), for the country in question (in millions of U.S. dollars), the percent share the country is of the region, and of the globe. These comparative benchmarks allow the reader to quickly gauge a country vis-à-vis others. Using econometric models which project fundamental economic dynamics within each country and across countries, latent demand estimates are created. This report does not discuss the specific players in the market serving the latent demand, nor specific details at the product level. The study also does not consider short-term cyclicalities that might affect...

© 2017