Science Current Events | Science News | Brightsurf.com
 

Nuclear power plants can produce hydrogen to fuel the 'hydrogen economy'

March 26, 2012
The long-sought technology for enabling the fabled "hydrogen economy" - an era based on hydrogen fuel that replaces gasoline, diesel and other fossil fuels, easing concerns about foreign oil and air pollution - has been available for decades and could begin commercial production of hydrogen in this decade, a scientist reported here today.

Speaking at the 243rd National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society, Ibrahim Khamis, Ph.D., described how heat from existing nuclear plants could be used in the more economical production of hydrogen, with future plants custom-built for hydrogen production. He is with the International Atomic Energy Agency (IAEA) in Vienna, Austria.

"There is rapidly growing interest around the world in hydrogen production using nuclear power plants as heat sources," Khamis said. "Hydrogen production using nuclear energy could reduce dependence on oil for fueling motor vehicles and the use of coal for generating electricity. In doing so, hydrogen could have a beneficial impact on global warming, since burning hydrogen releases only water vapor and no carbon dioxide, the main greenhouse gas. There is a dramatic reduction in pollution."

Khamis said scientists and economists at IAEA and elsewhere are working intensively to determine how current nuclear power reactors - 435 are operational worldwide - and future nuclear power reactors could be enlisted in hydrogen production.

Most hydrogen production at present comes from natural gas or coal and results in releases of the greenhouse gas carbon dioxide. On a much smaller scale, some production comes from a cleaner process called electrolysis, in which an electric current flowing through water splits the H2O molecules into hydrogen and oxygen. This process, termed electrolysis, is more efficient and less expensive if water is first heated to form steam, with the electric current passed through the steam.

Khamis said that nuclear power plants are ideal for hydrogen production because they already produce the heat for changing water into steam and the electricity for breaking the steam down into hydrogen and oxygen. Experts envision the current generation of nuclear power plants using a low-temperature electrolysis which can take advantage of low electricity prices during the plant's off-peak hours to produce hydrogen. Future plants, designed specifically for hydrogen production, would use a more efficient high-temperature electrolysis process or be coupled to thermochemical processes, which are currently under research and development.

"Nuclear hydrogen from electrolysis of water or steam is a reality now, yet the economics need to be improved," said Khamis. He noted that some countries are considering construction of new nuclear plants coupled with high-temperature steam electrolysis (HTSE) stations that would allow them to generate hydrogen gas on a large scale in anticipation of growing economic opportunities.

Khamis described how IAEA's Hydrogen Economic Evaluation Programme (HEEP) is helping. IAEA has designed its HEEP software to help its member states take advantage of nuclear energy's potential to generate hydrogen gas. The software assesses the technical and economic feasibility of hydrogen production under a wide variety of circumstances.

American Chemical Society


Related Hydrogen Production Current Events and Hydrogen Production News Articles


Net energy analysis should become a standard policy tool, Stanford scientists say
Policymakers should conduct "net energy analyses" when evaluating the long-term sustainability of energy technologies, according to new Stanford University research.

Recycling industrial waste water
A research group composed of Dr. Martin Prechtl, Leo Heim and their colleagues at the University of Cologne's Department of Chemistry has discovered a new method of generating hydrogen using water and formaldehyde.

Atomic-Scale Catalysts May Produce Cheap Hydrogen
Researchers at North Carolina State University have shown that a one-atom thick film of molybdenum sulfide (MoS2) may work as an effective catalyst for creating hydrogen. The work opens a new door for the production of cheap hydrogen.

An improved, cost-effective catalyst for water-splitting devices
Solar energy appears to be the only form of renewable that can be exploited at level that matches the world's growing needs.

Deep Carbon Observatory scientists discover quick recipe for producing hydrogen
Scientists in Lyon, a French city famed for its cuisine, have discovered a quick-cook recipe for copious volumes of hydrogen (H2).

Researchers find rust can power up artificial photosynthesis
Chemists at Boston College have achieved a series of breakthroughs in their efforts to develop an economical means of harnessing artificial photosynthesis by narrowing the voltage gap between the two crucial processes of oxidation and reduction, according to their latest research, published this week in the journal Angewandte Chemie.

Wormlike hematite photoanode breaks the world-record for solar hydrogen production efficiency
A research team of Ulsan National Institute of Science and Technology (UNIST), South Korea, developed a "wormlike" hematite photoanode that can convert sunlight and water to clean hydrogen energy with a record-breaking high efficiency of 5.3%.

Hydrogen Fuel From Sunlight: Berkeley Lab Researchers at Joint Center for Artificial Photosynthesis Make Unique Semiconductor/Catalyst Construct
In the search for clean, green sustainable energy sources to meet human needs for generations to come, perhaps no technology matches the ultimate potential of artificial photosynthesis.

New nuclear fuel-rod cladding could lead to safer power plants
In the aftermath of Japan's earthquake and tsunami in March 2011, the Fukushima Daiichi nuclear plant was initially driven into shutdown by the magnitude 9.0 quake; its emergency generators then failed because they were inundated by the tsunami.

Recipe for Low-Cost, Biomass-Derived Catalyst for Hydrogen Production
In a paper to be published in an upcoming issue of Energy & Environmental Science (now available online), researchers at the U.S. Department of Energy's Brookhaven National Laboratory describe details of a low-cost, stable, effective catalyst that could replace costly platinum in the production of hydrogen.
More Hydrogen Production Current Events and Hydrogen Production News Articles

Hydrogen and Syngas Production and Purification Technologies

Hydrogen and Syngas Production and Purification Technologies
by Ke Liu (Author), Chunshan Song (Author), Velu Subramani (Author)


Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applicationsServes as a resource for practicing researchers and as a text in graduate-level programsTackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plantsIncludes homework-style problems

Hydrogen Fuel: Production, Transport, and Storage

Hydrogen Fuel: Production, Transport, and Storage
by Ram B. Gupta (Editor)


From Methane to Hydrogen—Making the Switch to a Cleaner Fuel Source The world’s overdependence on fossil fuels has created environmental problems, such as air pollution and global warming, as well as political and economic unrest. With water as its only by-product and its availability in all parts of the world, hydrogen promises to be the next great fuel source. All of the Key Aspects of Hydrogen Fuel Hydrogen Fuel: Production, Transport, and Storage describes various aspects of hydrogen fuel, including production from both renewable and nonrenewable sources, purification, storage, transport, safety, codes, and carbon dioxide sequestration. The book examines the unique properties and uses of the hydrogen molecule, its ability to be produced from numerous energy sources, and its...

Hydrogen Production Facilities Plant Performance and Cost Comparisons

Hydrogen Production Facilities Plant Performance and Cost Comparisons
by U. S. Department of Energy (Author), National Energy Technology Laboratory (Author)


In support of the U.S. Department of Energy (DOE) Advanced Research Program, conceptual systems and cost analyses were developed by the Parsons Corporation for coal processing plants to produce hydrogen while recovering carbon dioxide (CO2) for offsite processing or sequestration. These plants had been referred to as “decarbonized fuel plants,” but are now called “hydrogen fuel plants.” The scope of work for this analysis entailed the following: Identifying alternative processes and technologies utilized for production of hydrogen from coal; Reviewing the technical and economic characteristics of developmental materials and technologies for separating hydrogen and oxygen from gas mixtures; Conceptualizing process plant designs that utilize developing technologies and materials,...

Hydrogen Production from EtOH by Supercritical Water Partial Oxidation

Hydrogen Production from EtOH by Supercritical Water Partial Oxidation
by Wesley Hsiao (Author)


Near zero emission hydrogen-based processes, especially with respect to greenhouse gas emission, can be achieved if hydrogen originates from renewable feedstock, such as bio-ethanol. Indeed, bio-ethanol is almost neutral from the standpoint of global warming because its production through agriculture consumes just slightly less CO2 than is produced during combustion. The present book reports findings on hydrogen production from ethanol by non-catalytic supercritical water partial oxidation (SWPO).

Hydrogen production from catalytic gasification of cellulose in supercritical water [An article from: Chemical Engineering Journal]

Hydrogen production from catalytic gasification of cellulose in supercritical water [An article from: Chemical Engineering Journal]
by X. Hao (Author), L. Guo (Author), X. Zhang (Author), Y. Guan (Author)


This digital document is a journal article from Chemical Engineering Journal, published by Elsevier in 2005. The article is delivered in HTML format and is available in your Amazon.com Media Library immediately after purchase. You can view it with any web browser.

Description:
Interests in large-scale use of biomass for energy and in hydrogen are motivated largely by global environmental issues. Cellulose and sawdust were gasified in supercritical water to produce hydrogen-rich gas in this paper, and Ru/C, Pd/C, CeO"2 paticles, nano-CeO"2 and nano-(CeZr)"xO"2 were selected as catalysts. The experimental results showed that the catalytic activities were Ru/C>Pd/C>nano-(CeZr)"xO"2>nano-CeO"2>CeO"2 particle in turn. Low-concentration sodium carboxymethylcellulose (CMC) (2-3wt.%)...

Hydrogen Generator Gas for Vehicles and Engines: Hydrogen Production from Organic Material

Hydrogen Generator Gas for Vehicles and Engines: Hydrogen Production from Organic Material
by Samuel Wyer (Author)


Provides you with the fundamental knowledge upon which any rational discussion about Hydrogen Science must be based. Contains information on the physics and applied chemistry that make up the foundation of hydrogen based energy production. This book was written by a great man named Samuel S. Wyer. We have republished his work, A Treatise on Producer-Gas and Gas-Producers as, Hydrogen Production from Organic Material by Partial Oxidation and Steam Reformation.

Hydrogen Production from Nuclear Energy (Lecture Notes in Energy)

Hydrogen Production from Nuclear Energy (Lecture Notes in Energy)
by Greg F Naterer (Author), Ibrahim Dincer (Author), Calin Zamfirescu (Author)


With the resurgence of nuclear power around the world, and the increasingly important role of hydrogen as a clean energy carrier, the utilization of nuclear energy for large-scale hydrogen production will have a key role in a sustainable energy future. Co-generation of both electricity and hydrogen from nuclear plants will become increasingly attractive. It enables load leveling together with renewable energy and storage of electricity in the form of hydrogen, when electricity prices and demand are lowest at off-peak hours of nuclear plants, such as overnight. Hydrogen Production from Nuclear Energy provides an overview of the latest developments and methods of nuclear based hydrogen production, including electrolysis and thermochemical cycles. Particular focus is given to thermochemical...

Hashimoto's Thyroiditis: Lifestyle Interventions for Finding and Treating the Root Cause

Hashimoto's Thyroiditis: Lifestyle Interventions for Finding and Treating the Root Cause
by Izabella Wentz PharmD (Author), Marta Nowosadzka MD (Contributor)


What’s Really Going on in Hashimoto’s? Hashimoto's is more than just hypothyroidism. Most patients with Hashimoto's will present with acid reflux, nutrient deficiencies, anemia, intestinal permeability, food sensitivities, gum disorders and hypoglycemia in addition to the “typical” hypothyroid symptoms such as weight gain, cold intolerance, hair loss, fatigue and constipation. The body becomes stuck in a vicious cycle of immune system overload, adrenal insufficiency, gut dysbiosis, impaired digestion, inflammation, and thyroid hormone release abnormalities. This cycle is self-sustaining and will continue causing more and more symptoms until an external factor intervenes and breaks the cycle apart. The lifestyle interventions discussed in this book aim to dismantle the vicious...

Build A Solar Hydrogen Fuel Cell System

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)


Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology. Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including: ESPMs (Electrolyzer Specific Photovoltaic Modules) – 40 watt solar panels designed specifically to run electrolyzers efficiently; a 40-80 watt electrolyzer for intermittant power from renewable energy sources such as solar and wind; and, a 6-12...

Hydrogen: Production and Marketing (Acs Symposium Series)

Hydrogen: Production and Marketing (Acs Symposium Series)
by W. Novis Smith (Editor)


A compilation of multiple authors covering, Overview of hydrogen research and development, industrial technology and economics - present and future, commercial distribution and safety, the potential of future technology and applications.

© 2014 BrightSurf.com