Science Current Events | Science News |

How black holes grow

April 02, 2012

New study indicates they eat binary star partners

SALT LAKE CITY -- A study led by a University of Utah astrophysicist found a new explanation for the growth of supermassive black holes in the center of most galaxies: they repeatedly capture and swallow single stars from pairs of stars that wander too close.

Using new calculations and previous observations of our own Milky Way and other galaxies, "we found black holes grow enormously as a result of sucking in captured binary star partners," says physics and astronomy Professor Ben Bromley, lead author of the study, which is set for online publication April 2 in Astrophysical Journal Letters.

"I believe this has got to be the dominant method for growing supermassive black holes," he adds. "There are two ways to grow a supermassive black hole: with gas clouds and with stars. Sometimes there's gas and sometimes there is not. We know that from observations of other galaxies. But there are always stars."

"Our mechanism is an efficient way to bring a star to a black hole," Bromley says. "It's really hard to target a single star at a black hole. It's a lot easier to throw a binary at it," just as it's more difficult to hit a target using a slingshot, which hurls a single stone, than with a bola, which hurls two weights connected by a cord.

A binary pair of stars orbiting each other "is essentially a single object much bigger than the size of the individual stars, so it is going to interact with the black hole more efficiently," he explains. "The binary doesn't have to get nearly as close for one of the stars to get ripped away and captured."

But to prove the theory will require more powerful telescopes to find three key signs: large numbers of small stars captured near supermassive black holes, more observations of stars being "shredded" by gravity from black holes, and large numbers of "hypervelocity stars" that are flung from galaxies at more than 1 million mph when their binary partners are captured.

Bromley, a University of Utah astrophysicist, did the study with astronomers Scott Kenyon, Margaret Geller and Warren Brown, all of the Smithsonian Astrophysical Observatory in Cambridge, Mass. The study was funded by both institutions.

What Does a Supermassive Black Hole Eat: Gas or Stars?

Black holes are objects in space so dense that not even light can escape their gravity, although powerful jets of light and energy can be emitted from a black hole's vicinity as gas and stars are sucked into it.

Small black holes result from the collapse of individual stars. But the centers of most galaxies, including our own Milky Way, are occupied by what are popularly known as "supermassive" black holes that contain mass ranging from 1 million to 10 billion stars the size of our sun.

Astrophysicists long have debated how supermassive black holes grew during the 14 billion years since the universe began in a great expansion of matter and energy named the Big Bang. One side believes black holes grow larger mainly by sucking in vast amounts of gas; the other side says they grow primarily by capturing and sucking in stars.

Just last month, other researchers published a theory that a black hole sucks in "food" by tipping its "plates" - two tilted gas disks colliding as they orbit the black hole - in a way that makes the speeding gas slow down so the black hole can swallow it.

Bromley says that theory overcomes a key problem: gas flows into black holes inefficiently. "But are misaligned gas disks common enough to be important for black hole growth?" he asks. "It's fair to say that gas contributes to the growth of black holes, but it is still uncertain how."

The new theory about binary stars - a pair of stars that orbit each other - arose from Bromley's earlier research to explain hypervelocity stars, which have been observed leaving our Milky Way galaxy at speeds ranging from 1.1 million to 1.8 million mph, compared with the roughly 350,000 mph speed of most stars.

Munching Binaries: One is Captured, One Speeds Away

"The hypervelocity stars we see come from binary stars that stray close to the galaxy's massive black hole," he says. "The hole peels off one binary partner, while the other partner - the hypervelocity star - gets flung out in a gravitational slingshot."

"We put the numbers together for observed hypervelocity stars and other evidence, and found that the rate of binary encounters [with our galaxy's supermassive black hole] would mean most of the mass of the galaxy's black hole came from binary stars," Bromley says. "We estimated these interactions for supermassive black holes in other galaxies and found that they too can grow to billions of solar masses in this way."

As many as half of all stars are in binary pairs, so they are plentiful in the Milky Way and other galaxies, he adds. But the study assumed conservatively that only 10 percent of stars exist in binary pairs.

The new study looked at each step in the process of a supermassive black hole eating binary stars, and calculated what would be required for the process to work in terms of the rates at which hypervelocity stars are produced, binary partners are captured, the captured stars are bound to the black hole in elongated orbits and then sucked into it.

The scientists then compared the results with actual observations of supermassive black holes, stars clustering near them and "tidal disruption events" in which black holes in other galaxies are seen to shred stars while pulling them into the hole.

"It fits together, and it works," Bromley says. "When we look at observations of how stars are accumulating in our galactic center, it's clear that much of the mass of the black hole likely came from binary stars that were torn apart."

He refers to the process of a supermassive black hole capturing stars from binary pairs as "filling the bathtub." Once the tub - the area near the black hole - is occupied by a cluster of captured stars, they go "down the drain" into the black hole over millions of years. His study shows the "tub" fills at about the same rate it drains, meaning stars captured by a supermassive black hole eventually are swallowed.

The study's key conclusions:

-- The theory accurately predicts the rate (one every 1,000 to 100,000 years) at which hypervelocity stars are observed leaving our galaxy and at which stars are captured into the star cluster seen near our galaxy's supermassive black hole.

-- The rate of "tidal disruption events," which are stars being shredded and pulled into supermassive black holes in other galaxies, also matches what the theory predicts, based on the limited number seen since they first were observed in the early 2000s. That rate also is one every 1,000 to 100,000 years.

-- The calculations show how the theory's rate of binary capture and consumption can explain how the Milky Way's supermassive black hole has at least doubled to quadrupled in mass during the past 5 billion to 10 billion years.

When the researchers considered the number of stars near the Milky Way's center, their speed and the odds they will encounter the supermassive black hole, they estimated that one binary star will be torn apart every 1,000 years by the hole's gravity.

During the last 10 billion years, that would mean the Milky Way's supermassive black hole ate 10 million solar masses - more than enough to account for the hole's actual size of 4 million solar masses.

"We found a wide range of black hole masses can be explained by this process," Bromley says.

Confirmation of the theory must await more powerful orbiting and ground-based telescopes. To confirm the theory, such telescopes should find many more stars in the cluster near the Milky Way's supermassive black hole (we now see only the brightest ones), a certain rate of hypervelocity stars in southern skies, and more observations of stars being shredded in other galaxies.

University of Utah

Related Supermassive Black Hole Current Events and Supermassive Black Hole News Articles

Scientists discover how supermassive black holes keep galaxies turned off
An international team of scientists has identified a common phenomenon in galaxies that could explain why huge numbers of them turn into cosmic graveyards.

Supermassive black holes in 'red geyser' galaxies cause galactic warming
An international team of scientists, including the University of Kentucky's Renbin Yan, have uncovered a new class of galaxies, called "red geysers," with supermassive black hole winds so hot and energetic that stars can't form.

Supermassive black hole wind can stop new stars from forming
Scientists have uncovered a new class of galaxies with supermassive black hole winds that are energetic enough to suppress future star formation.

Hubble finds clues to the birth of supermassive black holes
Astrophysicists have taken a major step forward in understanding how supermassive black holes formed. Using data from Hubble and two other space telescopes, Italian researchers have found the best evidence yet for the seeds that ultimately grow into these cosmic giants.

Hubble spies a spiral snowflake
Together with irregular galaxies, spiral galaxies make up approximately 60 percent of the galaxies in the local universe.

UCI astronomers determine precise mass of a giant black hole
Astronomers from the University of California, Irvine and other universities have derived a highly precise measurement of the mass of a black hole at the center of a nearby giant elliptical galaxy.

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast
Nearly 10 billion years ago, the black hole at the center of a galaxy known as PKS B1424-418 produced a powerful outburst. Light from this blast began arriving at Earth in 2012.

Supermassive black holes may be lurking everywhere in the universe
A near-record supermassive black hole discovered in a sparse area of the local universe indicates that these monster objects - this one equal to 17 billion suns - may be more common than once thought, according to University of California, Berkeley, astronomers.

Behemoth black hole found in an unlikely place
Astronomers have uncovered one of the biggest supermassive black holes, with the mass of 17 billion Suns, in an unlikely place: the centre of a galaxy that lies in a quiet backwater of the Universe.

Gravitational wave search provides insights into galaxy evolution and mergers
New results from NANOGrav - the North American Nanohertz Observatory for Gravitational Waves - establish astrophysically significant limits in the search for low-frequency gravitational waves.
More Supermassive Black Hole Current Events and Supermassive Black Hole News Articles

Black Hole Blues and Other Songs from Outer Space

Black Hole Blues and Other Songs from Outer Space
by Janna Levin (Author)

The authoritative story of the headline-making discovery of gravitational waves—by an eminent theoretical astrophysicist and award-winning writer.

From the author of How the Universe Got Its Spots and A Madman Dreams of Turing Machines, the epic story of the scientific campaign to record the soundtrack of our universe.
Black holes are dark. That is their essence. When black holes collide, they will do so unilluminated. Yet the black hole collision is an event more powerful than any since the origin of the universe. The profusion of energy will emanate as waves in the shape of spacetime: gravitational waves. No telescope will ever record the event; instead, the only evidence would be the sound of spacetime ringing. In 1916, Einstein predicted the existence of...

A Black Hole Is Not a Hole

A Black Hole Is Not a Hole
by Carolyn Cinami DeCristofano (Author), Michael Carroll (Illustrator)

Get ready to S-T-R-E-T-C-H your mind!

What is a black hole? Where do they come from? How were they discovered? Can we visit one? Carolyn Cinami DeCristofano takes readers on a ride through the galaxies (ours, and others), answering these questions and many more about the phenomenon known as a black hole.

In lively and often humorous text, the book starts off with a thorough explanation of gravity and the role it plays in the formation of black holes. Paintings by Michael Carroll, coupled with real telescopic images, help readers visualize the facts and ideas presented in the text, such as how light bends, and what a supernova looks like.

A BLACK HOLE IS NOT A HOLE is an excellent introduction to an extremely complex scientific concept. Back matter includes a timeline...

Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved

Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved
by Marcia Bartusiak (Author)

For more than half a century, physicists and astronomers engaged in heated dispute over the possibility of black holes in the universe. The weirdly alien notion of a space-time abyss from which nothing escapes—not even light—seemed to confound all logic. This engrossing book tells the story of the fierce black hole debates and the contributions of Einstein and Hawking and other leading thinkers who completely altered our view of the universe.

Renowned science writer Marcia Bartusiak shows how the black hole helped revive Einstein’s greatest achievement, the general theory of relativity, after decades during which it had been pushed into the shadows. Not until astronomers discovered such surprising new phenomena as neutron stars and black holes did the once-sedate universe...

The Galactic Supermassive Black Hole

The Galactic Supermassive Black Hole
by Fulvio Melia (Author)

Here, one of the world's leading astrophysicists provides the first comprehensive and logically structured overview of the many ideas and discoveries pertaining to the supermassive black hole at the galactic center known as Sagittarius A*. By far the closest galactic nucleus in the universe, Sagittarius A* alone can provide us with a realistic expectation of learning about the physics of strong gravitational fields, and the impact of such fields on the behavior of matter and radiation under severe physical conditions. Its proximity may even provide the opportunity to directly test one of general relativity's most enigmatic predictions--the existence of closed pockets of space-time hidden behind an event horizon. The plethora of research on Sagittarius A* since its discovery in 1974 has...

Black Holes: A Very Short Introduction (Very Short Introductions)

Black Holes: A Very Short Introduction (Very Short Introductions)
by Katherine Blundell (Author)

Black holes are a constant source of fascination to many due to their mysterious nature. This Very Short Introduction, addresses a variety of questions, including what a black hole actually is, how they are characterized and discovered, and what would happen if you came too close to one.

Professor Katherine Blundell looks at the seemingly paradoxical, mysterious, and intriguing phenomena of black holes. Outlining their nature and characteristics, both those resulting from the spectacular collapse of heavy stars, and the giant black holes found at the centres of galaxies, she separates scientific fact from science fiction, and demonstrates the important role they play in the cosmos.

The Very Short Introductions series from Oxford University Press contains...

Death by Black Hole: And Other Cosmic Quandaries

Death by Black Hole: And Other Cosmic Quandaries
by Neil deGrasse Tyson (Author)

“[Tyson] tackles a great range of subjects . . . with great humor, humility, and―most important― humanity.” ―Entertainment Weekly Loyal readers of the monthly "Universe" essays in Natural History magazine have long recognized Neil deGrasse Tyson's talent for guiding them through the mysteries of the cosmos with clarity and enthusiasm. Bringing together more than forty of Tyson's favorite essays, ?Death by Black Hole? explores a myriad of cosmic topics, from what it would be like to be inside a black hole to the movie industry's feeble efforts to get its night skies right. One of America's best-known astrophysicists, Tyson is a natural teacher who simplifies the complexities of astrophysics while sharing his infectious fascination for our...

The Edge of Infinity: Supermassive Black Holes in the Universe

The Edge of Infinity: Supermassive Black Holes in the Universe
by Fulvio Melia (Author)

This timely book is suitable for the general reader wishing to find answers to some of the intriguing questions now being asked about black holes. Although once recognized as the most destructive force in nature, following a cascade of astonishing discoveries, the opinion of supermassive black holes has undergone a dramatic shift. Astronomers are discovering that these objects may have been critical to the formation of structure in the early universe, spawning bursts of star formation, planets, and even life itself. Fulvio Melia is Associate Head of Physics and Professor of Astronomy at the University of Arizona. He is author of Electrodynamics (University of Chicago, 2001), and a forthcoming title, The Black Hole at the Center of Our Galaxy (Princeton).

Black Holes! Learn About Black Holes and Enjoy Colorful Pictures - Look and Learn! (50+ Photos of Black Holes)

Black Holes! Learn About Black Holes and Enjoy Colorful Pictures - Look and Learn! (50+ Photos of Black Holes)

Are your kids interested in Black Holes? Awesome! You have found the right book. Help your children learn more about Black Holes today by reading this book.

Here is what is included inside "Black Holes! Learn About Black Holes and Enjoy Colorful Pictures – Look and Learn!"...

Black Holes
Rogue Black Holes
Black Hole Images
Black Hole Facts
Supermassive Black Holes
Black Hole Structures
Event Horizons
Fun Black Hole Facts
And Lots More!

Includes over 50 high quality photos of Black Holes!

Other bonuses inside "Black Holes! Learn About Black Holes and Enjoy Colorful Pictures – Look and Learn!"...
This book has photos of Black Holes.

Explore More: Fun Learning Facts About Black Holes: Illustrated Fun Learning For Kids (Volume 1)

Explore More: Fun Learning Facts About Black Holes: Illustrated Fun Learning For Kids (Volume 1)
by Jake Ibsen (Author)

Welcome to the Explore More Book Series! Bestselling children's author Jake Ibsen presents "Explore More: Fun Learning Facts About Black Holes". This book uses captivating images and expertly written words to teach children about "Black Holes". Perfect reading for any occasion and especially ideal for bed times, long journeys or for bonding with your child. Fun Filled Learning for Your Child (and you!) Every one of our books is lovingly researched, illustrated and put together to outstand, awe and inspire the reader. Our beautiful images help explain and enlighten each well-written fact. This book covers a range of exciting topics including: * What Are Black Holes? * Why Is It Called A Black Hole? * How Big Is A Black Hole? * Where Is The Closest Black Hole? * How Heavy Is A Black...

Introduction to General Relativity, Black Holes and Cosmology

Introduction to General Relativity, Black Holes and Cosmology
by Yvonne Choquet-Bruhat (Author)

General Relativity is a beautiful geometric theory, simple in its mathematical formulation but leading to numerous consequences with striking physical interpretations: gravitational waves, black holes, cosmological models, and so on.

This introductory textbook is written for mathematics students interested in physics and physics students interested in exact mathematical formulations (or for anyone with a scientific mind who is curious to know more of the world we live in), recent remarkable experimental and observational results which confirm the theory are clearly described and no specialised physics knowledge is required. The mathematical level of Part A is aimed at undergraduate students and could be the basis for a course on General Relativity. Part B is more advanced, but...

© 2016