Science Current Events | Science News |

Some Stars Capture Rogue Planets

April 18, 2012
Cambridge, MA - New research suggests that billions of stars in our galaxy have captured rogue planets that once roamed interstellar space. The nomad worlds, which were kicked out of the star systems in which they formed, occasionally find a new home with a different sun. This finding could explain the existence of some planets that orbit surprisingly far from their stars, and even the existence of a double-planet system.

"Stars trade planets just like baseball teams trade players," said Hagai Perets of the Harvard-Smithsonian Center for Astrophysics.

The study, co-authored by Perets and Thijs Kouwenhoven of Peking University, China, will appear in the April 20th issue of The Astrophysical Journal.

To reach their conclusion, Perets and Kouwenhoven simulated young star clusters containing free-floating planets. They found that if the number of rogue planets equaled the number of stars, then 3 to 6 percent of the stars would grab a planet over time. The more massive a star, the more likely it is to snag a planet drifting by.

They studied young star clusters because capture is more likely when stars and free-floating planets are crowded together in a small space. Over time, the clusters disperse due to close interactions between their stars, so any planet-star encounters have to happen early in the cluster's history.

Rogue planets are a natural consequence of star formation. Newborn star systems often contain multiple planets. If two planets interact, one can be ejected and become an interstellar traveler. If it later encounters a different star moving in the same direction at the same speed, it can hitch a ride.

A captured planet tends to end up hundreds or thousands of times farther from its star than Earth is from the Sun. It's also likely to have a orbit that's tilted relative to any native planets, and may even revolve around its star backward.

Astronomers haven't detected any clear-cut cases of captured planets yet. Imposters can be difficult to rule out. Gravitational interactions within a planetary system can throw a planet into a wide, tilted orbit that mimics the signature of a captured world.

Finding a planet in a distant orbit around a low-mass star would be a good sign of capture, because the star's disk wouldn't have had enough material to form the planet so far out.

The best evidence to date in support of planetary capture comes from the European Southern Observatory, which announced in 2006 the discovery of two planets (weighing 14 and 7 times Jupiter) orbiting each other without a star.

"The rogue double-planet system is the closest thing we have to a 'smoking gun' right now," said Perets. "To get more proof, we'll have to build up statistics by studying a lot of planetary systems."

Could our solar system harbor an alien world far beyond Pluto? Astronomers have looked, and haven't found anything yet.

"There's no evidence that the Sun captured a planet," said Perets. "We can rule out large planets. But there's a non-zero chance that a small world might lurk on the fringes of our solar system."

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

Harvard-Smithsonian Center for Astrophysics

Related Astrophysics Current Events and Astrophysics News Articles

Physicists consider implications of recent revelations about the universe's first light
Last month, scientists announced the first hard evidence for cosmic inflation, the process by which the infant universe swelled from microscopic to cosmic size in an instant. This almost unimaginably fast expansion was first theorized more than three decades ago, yet only now has "smoking gun" proof emerged.

Liquid spacetime
What if spacetime were a kind of fluid? This is the question tackled by theoretical physicists working on quantum gravity by creating models attempting to reconcile gravity and quantum mechanics.

Mysteries of a nearby planetary system's dynamics now are solved
Mysteries of one of the most fascinating nearby planetary systems now have been solved, report authors of a scientific paper to be published by the journal Monthly Notices of the Royal Astronomical Society in its early online edition on 22 April 2014.

First Earth-Size Planet Is Discovered in Another Star's 'habitable zone'
A team of astronomers that includes Penn State scientists has discovered the first Earth-size planet orbiting a star in the "habitable zone" -- the distance from a star where liquid water might pool on the surface of an orbiting planet.

Georgia Tech researchers use XSEDE supercomputers to understand and predict how black holes swallow stars
Somewhere in the cosmos an ordinary galaxy spins, seemingly at slumber. Then all of a sudden, WHAM! A flash of light explodes from the galaxy's center. A star orbiting too close to the event horizon of the galaxy's central supermassive black hole is torn apart by the force of gravity, heating up its gas and sending out a beacon to the far reaches of the universe.

SU plays key role in search for elusive dark matter
Physicist Richard Schnee hopes to find traces of dark matter by studying particles with low masses and interaction rates, some of which have never been probed before.

SU professors test boundaries of 'new physics' with discovery of 4-quark hadron
Physicists in Syracuse University's College of Arts and Sciences have helped confirm the existence of exotic hadrons-a type of matter that cannot be classified within the traditional quark model.

Saturn's hexagon: An amazing phenomenon
Researchers of the University of the Basque Country reveal some of the secrets of Saturn's mysterious hexagonal wave, including its rotation period, which could be that of the planet itself.

Fermi Data Tantalize With New Clues To Dark Matter
A new study of gamma-ray light from the center of our galaxy makes the strongest case to date that some of this emission may arise from dark matter, an unknown substance making up most of the material universe.

Watching for a black hole to gobble up a gas cloud
Right now a doomed gas cloud is edging ever closer to the supermassive black hole at the center of our Milky Way galaxy. These black holes feed on gas and dust all the time, but astronomers rarely get to see mealtime in action.
More Astrophysics Current Events and Astrophysics News Articles

Introduction to Astrophysics: The Stars (Dover Books on Physics)

Introduction to Astrophysics: The Stars (Dover Books on Physics)
by Jean Dufay (Author), Owen Gingerich (Translator)

A bridge between introductory and advanced technical treatments, this readable and authoritative translation from the French provides an excellent guide to observational astrophysics. Physics students and professionals will appreciate the text's mid-level approach, in which methods of research and observation receive as much attention as results.
Confining his discussion to normal stars, the author examines current methods of stellar photometry and spectroscopy and the main results of research involving star classification and properties. Additional topics include construction of Hertzsprung-Russell diagrams, Yerkes two-dimensional classification, masses and densities of stars, general theories about the constitution of stellar atmospheres and the evolution of stars, and much more....

Astrophysics is Easy!: An Introduction for the Amateur Astronomer (The Patrick Moore Practical Astronomy Series)

Astrophysics is Easy!: An Introduction for the Amateur Astronomer (The Patrick Moore Practical Astronomy Series)
by Michael Inglis (Author)

Astrophysics is often - with some justification - regarded as incomprehensible without at least degree-level mathematics. Consequently, many amateur astronomers skip the math, and miss out on the fascinating fundamentals of the subject. In Astrophysics Is Easy! Mike Inglis takes a quantitative approach to astrophysics that cuts through the incomprehensible mathematics, and explains the basics of astrophysics in accessible terms. The reader can view objects under discussion with commercial amateur equipment.

Astrophysics for Physicists

Astrophysics for Physicists
by Arnab Rai Choudhuri (Author)

Designed for teaching astrophysics to physics students at advanced undergraduate or beginning graduate level, this textbook also provides an overview of astrophysics for astrophysics graduate students, before they delve into more specialized volumes. Assuming background knowledge at the level of a physics major, the textbook develops astrophysics from the basics without requiring any previous study in astronomy or astrophysics. Physical concepts, mathematical derivations and observational data are combined in a balanced way to provide a unified treatment. Topics such as general relativity and plasma physics, which are not usually covered in physics courses but used extensively in astrophysics, are developed from first principles. While the emphasis is on developing the fundamentals...

An Introduction to Modern Astrophysics (2nd Edition)

An Introduction to Modern Astrophysics (2nd Edition)
by Bradley W. Carroll (Author), Dale A. Ostlie (Author)

An Introduction to Modern Astrophysics, Second Edition has been thoroughly revised to reflect the dramatic changes and advancements in astrophysics that have occurred over the past decade. The Second Edition of this market-leading book has been updated to include the latest results from relevant fields of astrophysics and advances in our theoretical understanding of astrophysical phenomena. The Tools of Astronomy: The Celestial Sphere, Celestial Mechanics, The Continuous Spectrum of Light, The Theory of Special Relativity, The Interaction of Light and Matter, Telescopes; The Nature of Stars: Binary Systems and Stellar Parameters, The Classification of Stellar Spectra, Stellar Atmospheres, The Interiors of Stars, The Sun, The Process of Star Formation, Post-Main-Sequence Stellar...

The Universe in a Nutshell

The Universe in a Nutshell
by Stephen William Hawking (Author)

Stephen Hawking’s phenomenal, multimillion-copy bestseller, A Brief History of Time, introduced the ideas of this brilliant theoretical physicist to readers all over the world.

Now, in a major publishing event, Hawking returns with a lavishly illustrated sequel that unravels the mysteries of the major breakthroughs that have occurred in the years since the release of his acclaimed first book.

The Universe in a Nutshell

• Quantum mechanics
• M-theory
• General relativity
• 11-dimensional supergravity
• 10-dimensional membranes
• Superstrings
• P-branes
• Black holes

One of the most influential thinkers of our time, Stephen Hawking is an intellectual icon, known not only for the adventurousness of his ideas but for the...

An Introduction to Stellar Astrophysics

An Introduction to Stellar Astrophysics
by Francis LeBlanc (Author)

An Introduction to Stellar Astrophysics aspires to provide the reader with an intermediate knowledge on stars whilst focusing mostly on the explanation of the functioning of stars by using basic physical concepts and observational results.The book is divided into seven chapters, featuring both core and optional content:Basic conceptsStellar FormationRadiative Transfer in StarsStellar AtmospheresStellar InteriorsNucleosynthesis and Stellar Evolution andChemically Peculiar Stars and Diffusion.Student-friendly features include:Detailed examples to help the reader better grasp the most important conceptsA list of exercises is given at the end of each chapter and answers to a selection of these are presented.Brief recalls of the most important physical concepts needed to properly understand...

Foundations of Astrophysics

Foundations of Astrophysics
by Barbara Ryden (Author), Bradley M. Peterson (Author)

Key Benefit: Foundations of Astrophysics provides a contemporary and complete introduction to astrophysics for astronomy and physics majors. This book is briefer and more accessible than other books in the market, and is the most up-to-date book available in this fast-changing field. With a logical presentation and conceptual and quantitative end-of-chapter problems, the material is easier-to-grasp for introductory astrophysics readers. Key Topics: Early Astronomy, Emergence of Modern Astronomy, Orbital Mechanics, The Earth-Moon System, Interaction of Radiation and Matter, Astronomical Detection of Light, The Sun, Overview of the Solar System, Earth and Moon, The Planets,  Small Bodies in the Solar System, The Solar System in Perspective, Properties of Stars, Stellar...

Astrophysics Through Computation: With Mathematica® Support

Astrophysics Through Computation: With Mathematica® Support
by Professor Brian Koberlein (Author), Professor David Meisel (Author)

This new text surveys a series of fundamental problems in astrophysics, both analytically and computationally for advanced students in physics and astrophysics. The contents are supported by over 110 class-tested Mathematica notebooks, allowing rigorous solutions to be explored in a visually engaging way. Topics covered include many classical and historically interesting problems, enabling the students to appreciate the mathematical and scientific challenges that were overcome in the subject's development. The text also shows the advantages and disadvantages of using analytical and computational methods. It will serve students, professionals, and capable amateurs to master the quantitative details of modern astrophysics and the computational aspects of their research projects.

An Introduction to Modern Astrophysics

An Introduction to Modern Astrophysics
by Bradley W. Carroll (Author), Dale A. Ostlie (Author)

This exciting text opens the entire field of modern astrophysics to the reader by using only the basic tools of physics. Designed for the junior- level astrophysics course, each topic is approached in the context of the major unresolved questions in astrophysics. The core chapters have been designed for a course in stellar structure and evolution, while the extended chapters provide additional coverage of the solar system, galactic structure, dynamics, evolution, and cosmology.

Astrophysics in a Nutshell (In a Nutshell (Princeton))

Astrophysics in a Nutshell (In a Nutshell (Princeton))
by Dan Maoz (Author)

A concise but thorough introduction to the observational data and theoretical concepts underlying modern astronomy, Astrophysics in a Nutshell is designed for advanced undergraduate science majors taking a one-semester course. This well-balanced and up-to-date textbook covers the essentials of modern astrophysics--from stars to cosmology--emphasizing the common, familiar physical principles that govern astronomical phenomena, and the interplay between theory and observation.
In addition to traditional topics such as stellar remnants, galaxies, and the interstellar medium, Astrophysics in a Nutshell introduces subjects at the forefront of modern research, including black holes, dark matter, gravitational lensing, and dark energy, all updated with some of the latest observational...

© 2014