Science Current Events | Science News |

Some Stars Capture Rogue Planets

April 18, 2012
Cambridge, MA - New research suggests that billions of stars in our galaxy have captured rogue planets that once roamed interstellar space. The nomad worlds, which were kicked out of the star systems in which they formed, occasionally find a new home with a different sun. This finding could explain the existence of some planets that orbit surprisingly far from their stars, and even the existence of a double-planet system.

"Stars trade planets just like baseball teams trade players," said Hagai Perets of the Harvard-Smithsonian Center for Astrophysics.

The study, co-authored by Perets and Thijs Kouwenhoven of Peking University, China, will appear in the April 20th issue of The Astrophysical Journal.

To reach their conclusion, Perets and Kouwenhoven simulated young star clusters containing free-floating planets. They found that if the number of rogue planets equaled the number of stars, then 3 to 6 percent of the stars would grab a planet over time. The more massive a star, the more likely it is to snag a planet drifting by.

They studied young star clusters because capture is more likely when stars and free-floating planets are crowded together in a small space. Over time, the clusters disperse due to close interactions between their stars, so any planet-star encounters have to happen early in the cluster's history.

Rogue planets are a natural consequence of star formation. Newborn star systems often contain multiple planets. If two planets interact, one can be ejected and become an interstellar traveler. If it later encounters a different star moving in the same direction at the same speed, it can hitch a ride.

A captured planet tends to end up hundreds or thousands of times farther from its star than Earth is from the Sun. It's also likely to have a orbit that's tilted relative to any native planets, and may even revolve around its star backward.

Astronomers haven't detected any clear-cut cases of captured planets yet. Imposters can be difficult to rule out. Gravitational interactions within a planetary system can throw a planet into a wide, tilted orbit that mimics the signature of a captured world.

Finding a planet in a distant orbit around a low-mass star would be a good sign of capture, because the star's disk wouldn't have had enough material to form the planet so far out.

The best evidence to date in support of planetary capture comes from the European Southern Observatory, which announced in 2006 the discovery of two planets (weighing 14 and 7 times Jupiter) orbiting each other without a star.

"The rogue double-planet system is the closest thing we have to a 'smoking gun' right now," said Perets. "To get more proof, we'll have to build up statistics by studying a lot of planetary systems."

Could our solar system harbor an alien world far beyond Pluto? Astronomers have looked, and haven't found anything yet.

"There's no evidence that the Sun captured a planet," said Perets. "We can rule out large planets. But there's a non-zero chance that a small world might lurk on the fringes of our solar system."

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

Harvard-Smithsonian Center for Astrophysics

Related Astrophysics Current Events and Astrophysics News Articles

Antimatter catches a wave at SLAC
A study led by researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and the University of California, Los Angeles has demonstrated a new, efficient way to accelerate positrons, the antimatter opposites of electrons.

Dying star suffers 'irregular heartbeats
Some dying stars suffer from 'irregular heartbeats', research led by astronomers at the University of Warwick has discovered.

New data from Antarctic detector firms up cosmic neutrino sighting
Researchers using the IceCube Neutrino Observatory have sorted through the billions of subatomic particles that zip through its frozen cubic-kilometer-sized detector each year to gather powerful new evidence in support of 2013 observations confirming the existence of cosmic neutrinos.

A detector shines in search for dark matter
Results of the XENON100 experiment are a bright spot in the search for dark matter.

Mystery of exploding stars yields to astrophysicists
A longstanding mystery about the tiny stars that let loose powerful explosions known as Type Ia supernovae might finally be solved.

Scientists discover atomic-resolution details of brain signaling
Scientists have revealed never-before-seen details of how our brain sends rapid-fire messages between its cells.

Astronomers discover 'young Jupiter' exoplanet
One of the best ways to learn how our solar system evolved is to look to younger star systems in the early stages of development.

Cassiopeia's hidden gem: The closest rocky, transiting planet
Skygazers at northern latitudes are familiar with the W-shaped star pattern of Cassiopeia the Queen. This circumpolar constellation is visible year-round near the North Star. Tucked next to one leg of the W lies a modest 5th-magnitude star named HD 219134 that has been hiding a secret.

York scientists unlock secrets of stars through aluminium
Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

Dense star clusters shown to be binary black hole factories
The coalescence of two black holes -- a very violent and exotic event -- is one of the most sought-after observations of modern astronomy.
More Astrophysics Current Events and Astrophysics News Articles

Introduction to Astrophysics: The Stars (Dover Books on Physics)

Introduction to Astrophysics: The Stars (Dover Books on Physics)
by Jean Dufay (Author), Owen Gingerich (Translator)

A bridge between introductory and advanced technical treatments, this readable and authoritative translation from the French provides an excellent guide to observational astrophysics. Physics students and professionals will appreciate the text's mid-level approach, in which methods of research and observation receive as much attention as results.
Confining his discussion to normal stars, the author examines current methods of stellar photometry and spectroscopy and the main results of research involving star classification and properties. Additional topics include construction of Hertzsprung-Russell diagrams, Yerkes two-dimensional classification, masses and densities of stars, general theories about the constitution of stellar atmospheres and the evolution of stars, and much more....

The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory

The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory
by Brian Greene (Author)

The international bestseller that inspired a major Nova special and sparked a new understanding of the universe, now with a new preface and epilogue. Brian Greene, one of the world's leading string theorists, peels away layers of mystery to reveal a universe that consists of eleven dimensions, where the fabric of space tears and repairs itself, and all matter―from the smallest quarks to the most gargantuan supernovas―is generated by the vibrations of microscopically tiny loops of energy. The Elegant Universe makes some of the most sophisticated concepts ever contemplated accessible and thoroughly entertaining, bringing us closer than ever to understanding how the universe works.

Death by Black Hole: And Other Cosmic Quandaries

Death by Black Hole: And Other Cosmic Quandaries
by Neil deGrasse Tyson (Author)

“[Tyson] tackles a great range of subjects . . . with great humor, humility, and―most important― humanity.” ―Entertainment Weekly Loyal readers of the monthly "Universe" essays in Natural History magazine have long recognized Neil deGrasse Tyson's talent for guiding them through the mysteries of the cosmos with clarity and enthusiasm. Bringing together more than forty of Tyson's favorite essays, ?Death by Black Hole? explores a myriad of cosmic topics, from what it would be like to be inside a black hole to the movie industry's feeble efforts to get its night skies right. One of America's best-known astrophysicists, Tyson is a natural teacher who simplifies the complexities of astrophysics while sharing his infectious fascination for our...

An Introduction to Modern Astrophysics (2nd Edition)

An Introduction to Modern Astrophysics (2nd Edition)
by Bradley W. Carroll (Author), Dale A. Ostlie (Author)

An Introduction to Modern Astrophysics, Second Edition has been thoroughly revised to reflect the dramatic changes and advancements in astrophysics that have occurred over the past decade. The Second Edition of this market-leading book has been updated to include the latest results from relevant fields of astrophysics and advances in our theoretical understanding of astrophysical phenomena. The Tools of Astronomy: The Celestial Sphere, Celestial Mechanics, The Continuous Spectrum of Light, The Theory of Special Relativity, The Interaction of Light and Matter, Telescopes; The Nature of Stars: Binary Systems and Stellar Parameters, The Classification of Stellar Spectra, Stellar Atmospheres, The Interiors of Stars, The Sun, The Process of Star Formation, Post-Main-Sequence Stellar...

The Fabric of the Cosmos: Space, Time, and the Texture of Reality

The Fabric of the Cosmos: Space, Time, and the Texture of Reality
by Brian Greene (Author)

From Brian Greene, one of the world’s leading physicists and author the Pulitzer Prize finalist The Elegant Universe, comes a grand tour of the universe that makes us look at reality in a completely different way.

Space and time form the very fabric of the cosmos. Yet they remain among the most mysterious of concepts. Is space an entity? Why does time have a direction? Could the universe exist without space and time? Can we travel to the past? Greene has set himself a daunting task: to explain non-intuitive, mathematical concepts like String Theory, the Heisenberg Uncertainty Principle, and Inflationary Cosmology with analogies drawn from common experience. From Newton’s unchanging realm in which space and time are absolute, to Einstein’s fluid conception of...

An Introduction to Stellar Astrophysics

An Introduction to Stellar Astrophysics
by Francis LeBlanc (Author)

Fundamental to our understanding of the universe, stellar astrophysics deals with observations, theoretical understanding, classification, computer simulations and modeling of stars and their evolution. An Introduction to Stellar Astrophysics is a concise textbook containing core content on and detailed examples of stellar physics and stellar astronomy - stellar formation, radiative transfer, stellar atmospheres, stellar interiors, nucleosynthesis, stellar evolution, chemically peculiar stars, and diffusion. A list of problems completes each chapter, and optional content can be tailored to both the lecturer's wishes or the length of the course.

Foundations of Astrophysics

Foundations of Astrophysics
by Barbara S. Ryden (Author), Bradley M. Peterson (Author)

Key Benefit: Foundations of Astrophysics provides a contemporary and complete introduction to astrophysics for astronomy and physics majors. This book is briefer and more accessible than other books in the market, and is the most up-to-date book available in this fast-changing field. With a logical presentation and conceptual and quantitative end-of-chapter problems, the material is easier-to-grasp for introductory astrophysics readers. Key Topics: Early Astronomy, Emergence of Modern Astronomy, Orbital Mechanics, The Earth-Moon System, Interaction of Radiation and Matter, Astronomical Detection of Light, The Sun, Overview of the Solar System, Earth and Moon, The Planets,  Small Bodies in the Solar System, The Solar System in Perspective, Properties of Stars, Stellar...

Astrophysics for Physicists

Astrophysics for Physicists
by Arnab Rai Choudhuri (Author)

Designed for teaching astrophysics to physics students at advanced undergraduate or beginning graduate level, this textbook also provides an overview of astrophysics for astrophysics graduate students, before they delve into more specialized volumes. Assuming background knowledge at the level of a physics major, the textbook develops astrophysics from the basics without requiring any previous study in astronomy or astrophysics. Physical concepts, mathematical derivations and observational data are combined in a balanced way to provide a unified treatment. Topics such as general relativity and plasma physics, which are not usually covered in physics courses but used extensively in astrophysics, are developed from first principles. While the emphasis is on developing the fundamentals...

Origins: Fourteen Billion Years of Cosmic Evolution

Origins: Fourteen Billion Years of Cosmic Evolution
by Neil deGrasse Tyson (Author), Donald Goldsmith (Author)

“Who can ask for better cosmic tour guides to the universe than Drs. Tyson and Goldsmith?” ―Michio Kaku, author of Hyperspace and Parallel Worlds Our true origins are not just human, or even terrestrial, but in fact cosmic. Drawing on recent scientific breakthroughs and the current cross-pollination among geology, biology, astrophysics, and cosmology, ?Origins? explains the soul-stirring leaps in our understanding of the cosmos. From the first image of a galaxy birth to Spirit Rover's exploration of Mars, to the discovery of water on one of Jupiter's moons, coauthors Neil deGrasse Tyson and Donald Goldsmith conduct a galvanizing tour of the cosmos with clarity and exuberance. 32 pages of color illustrations

Astrophysics and the Evolution of the Universe

Astrophysics and the Evolution of the Universe
by Leonard S Kisslinger (Author)

The aim of this book is to teach undergraduate college or university students the basic physics concepts needed to understand the mathematics which describes the evolution of the universe, and based on this to teach the astrophysical theories behind evolution from very early times to the present. The book does not require students to have extensive knowledge of mathematics, like calculus, and includes material that explains concepts such as velocity, acceleration, and force. Based on this, fascinating topics such as Dark Matter, measuring Dark Energy via supernovae velocities, and the creation of mass via the Higgs mechanism are explained. All college students with an interest in science, especially astronomy, without extensive mathematical backgrounds should be able to use and learn from...

© 2015