Science Current Events | Science News | Brightsurf.com
 

Metal oxides hold the key to cheap, green energy

April 19, 2012
BINGHAMTON, NY - Harnessing the energy of sunlight can be as simple as tuning the optical and electronic properties of metal oxides at the atomic level by making an artificial crystal or super-lattice 'sandwich' says a Binghamton University researcher in a new study published in the journal Physical Review B.

"Metal oxides are cheap, abundant and 'green,'" said Louis Piper, assistant professor of physics at Binghamton University. "And as the study proved, quite versatile. With the right touch, metal oxides can be tailored to meet all sorts of needs, which is good news for technological applications, specifically in energy generation and flat screen displays."

Here's how it works: semiconductors are an important class of materials in between metals and insulators. They are defined by the size of their band gap, which represents the energy required to excite an electron from the occupied shell to an unoccupied shell where it can conduct electricity. Visible light covers a range of 1 (infrared) to 3 (ultraviolet) electron volts. For transparent conductors, a large band gap is required, whereas for artificial photosynthesis, a band gap corresponding to green light is needed. Metal oxides provide a means of tailoring the band gap.

But while metal oxides are very good at electron conduction, they are very poor "hole" conductors. Holes refer to absence of electrons, and can conduct positive charge. To maximize their technologically potential, especially for artificial photosynthesis and invisible electronics, hole conducting metal oxides are required.

Knowing this, Piper has begun studying layered metal oxides systems, which can be combined to selectively 'dope' (replace a small number of one type of atom in the material), or 'tune' (control the size of the band gap). Recent work revealed that a super-lattice of two hole-conducting copper oxides could cover the entire solar spectrum. The goal is to improve the performance whilst using environmentally benign and cheap metal alternatives.

For instance, indium oxide is one of the most widely used oxides used in the production of coatings for flat screen displays and solar cells. It can conduct electrons really well and is transparent. But it is also rare and very expensive. Piper's current research is aimed towards using much cheaper tin oxide layers to get electron and hole conduction with optical transparency.

But according to Piper, his research shows that one glove will not fit all purposes.

"It's going to be a case of some serious detective work," said Piper. "We're working in a world where physics and chemistry overlap. And we've reached the theoretical limit of our calculations and fundamental processes. Now we need to audit those calculations and see where we're missing things. I believe we will find those missing pieces by playing around with metal oxides."

By reinforcing metal oxides' 'good bits' and downplaying the rough spots, Piper is convinced that the development of new and exciting types of metal oxides that can be tailored for specific applications are well within our reach.

"We're talking battery storage, fuel cells, touch screen technology and all types of computer switches," said Piper. "We're in the middle of a very important gold rush and its very exciting to be part of that race to strike it rich. But first we have to figure out what we don't know before we can figure out what we do. One thing's for sure: metal oxides hold the key. And I believe that we at Binghamton University can contribute to these efforts by doing good science and taking a morally conscious approach."

Binghamton University


Related Metal Oxides Current Events and Metal Oxides News Articles


Water's reaction with metal oxides opens doors for researchers
A multi-institutional team has resolved a long-unanswered question about how two of the world's most common substances interact.

Self-assembly of gold nanoparticles into small clusters
Researchers at HZB in co-operation with Humboldt-Universität zu Berlin (HU, Berlin) have made an astonishing observation: they were investigating the formation of gold nanoparticles in a solvent and observed that the nanoparticles had not distributed themselves uniformly, but instead were self-assembled into small clusters.

Oregon chemists eye improved thin films with metal substitution
The yield so far is small, but chemists at the University of Oregon have developed a low-energy, solution-based mineral substitution process to make a precursor to transparent thin films that could find use in electronics and alternative energy devices.

Improving the cost and efficiency of renewable energy storage
A major challenge in renewable energy is storage. A common approach is a reaction that splits water into oxygen and hydrogen, and uses the hydrogen as a fuel to store energy.

Controlling thermal conductivities can improve energy storage
Controlling the flow of heat through materials is important for many technologies. While materials with high and low thermal conductivities are available, materials with variable and reversible thermal conductivities are rare, and other than high pressure experiments, only small reversible modulations in thermal conductivities have been reported.

Nanostructures to facilitate the process to eliminate organic contaminants in water
In her PhD thesis, Silvia Larumbe-Abuin has developed nanostructures that assist in the process to decontaminate water.

A Glassy Look for Manganites: Berkeley Lab Researchers at the ALS Observe Glass-like Behavior in the Electron-Spins of PCMO Crystals
Manganites - compounds of manganese oxides - show great promise as "go-to" materials for future electronic devices because of their ability to instantly switch from an electrical insulator to a conductor under a wide variety of external stimuli, including magnetic fields, photo-excitations and vibrational excitations.

'Exotic' material is like a switch when super thin
Researchers from Cornell University and Brookhaven National Laboratory have shown how to switch a particular transition metal oxide, a lanthanum nickelate (LaNiO3), from a metal to an insulator by making the material less than a nanometer thick.

Strain can alter materials' properties
In the ongoing search for new materials for fuel cells, batteries, photovoltaics, separation membranes, and electronic devices, one newer approach involves applying and managing stresses within known materials to give them dramatically different properties.

Electronics based on a 2-D electron gas
Usually, microelectronic devices are made of silicon or similar semiconductors. Recently, the electronic properties of metal oxides have become quite interesting.
More Metal Oxides Current Events and Metal Oxides News Articles

Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties (The International Series of Monographs on Chemistry)

Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties (The International Series of Monographs on Chemistry)
by P.A. Cox (Author)


Transition metal oxides form a series of compounds with a uniquely wide range of electronic properties. They have important applications as dielectrics, semiconductors and metals, and as materials for magnetic and optical uses. The discovery of high temperature superconductors has brought the attention of a wide scientific community to this area and has highlighted the problems involved in trying to understand transition metal oxides. The present book is not primarily about Tc superconductors, although their main properties are discussed in the final sections. The main aim is to describe the varied electronic behaviour shown by transition metal oxides, and to discuss the different types of theoretical models that have been proposed to interpret this behaviour.

Metal Oxides: Chemistry and Applications (Chemical Industries)

Metal Oxides: Chemistry and Applications (Chemical Industries)
by J.L.G. Fierro (Editor)


The chemistry of metals has traditionally been more understood than that of its oxides. As catalytic applications continue to grow in a variety of disciplines, Metal Oxides: Chemistry and Applications offers a timely account of transition-metal oxides (TMO), one of the most important classes of metal oxides, in the context of catalysis.

The first part of the book examines the crystal and electronic structure, stoichiometry and composition, redox properties, acid-base character, and cation valence states, as well as new approaches to the preparation of ordered TMO with extended structure of texturally defined systems. The second part compiles some practical aspects of TMO applications in materials science, chemical sensing, analytical chemistry, solid-state chemistry,...

MOS (Metal Oxide Semiconductor) Physics and Technology

MOS (Metal Oxide Semiconductor) Physics and Technology
by E. H. Nicollian (Author), J. R. Brews (Author)


Explains the theoretical and experimental foundations of the measurement of the electrical properties of the MOS system and the technology for controlling its properties. Emphasizes the silica and the silica-silicon interface. Provides a critical assessment of the literature, corrects incomplete or incorrect theoretical formulations, and gives critical comparisons of measurement methods. Contains information needed to grow an oxide, make an MOS capacitor array, and fabricate an integrated circuit with optimal performance and stability.

Metal Oxide Chemistry and Synthesis: From Solution to Solid State

Metal Oxide Chemistry and Synthesis: From Solution to Solid State
by Jean-Pierre Jolivet (Author)


The precipitation of metal oxides from aqueous solutions creates nanoparticles with interesting solid state properties, thus building a bridge between solution chemistry and solid state chemistry. This book is the first monograph to deal with the formation of metal oxides from aqueous solutions with emphasis on the formation and physical chemistry of nanoparticles.

Metal Oxide Chemistry and Synthesis: From Solution to Solid State
* Provides a comprehensive introduction to the synthesis of finely divided materials
* Presents the chemistry, physics and applications of these materials
* Builds a bridge between classical solution chemistry and new developments in solid state chemistry
* Introduces an important new area in inorganic chemistry
Part I examines the mechanism...

Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy

Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy
by Shriram Ramanathan (Editor)


Thin Film Metal-Oxides provides a representative account of the fundamental structure-property relations in oxide thin films. Functional properties of thin film oxides are discussed in the context of applications in emerging electronics and renewable energy technologies. Readers will find a detailed description of deposition and characterization of metal oxide thin films, theoretical treatment of select properties and their functional performance in solid state devices, from leading researchers. Scientists and engineers involved with oxide semiconductors, electronic materials and alternative energy will find Thin Film Metal-Oxides a useful reference.  

Metal Oxide Nanostructures as Gas Sensing Devices (Series in Sensors)

Metal Oxide Nanostructures as Gas Sensing Devices (Series in Sensors)
by G. Eranna (Author)


Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience. The book first covers current gas sensing tools and discusses the necessity for miniaturized sensors. It then focuses on the materials, devices, and techniques used for gas sensing applications, such as resistance and capacitance variations. The author addresses the issues of sensitivity, concentration, and temperature dependency as well as the response and recovery times crucial for sensors. He also presents techniques for synthesizing different metal...

Frontiers of 4d- and 5d-Transition Metal Oxides

Frontiers of 4d- and 5d-Transition Metal Oxides
by Gang Cao (Author), Gang Cao (Editor), Lance De-Long (Editor)


This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides. New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ significantly from those of the heavily studied 3d-transition metal oxides, mainly due to the relatively strong influence of the spin-orbit interaction and orbital order in 4d- and 5d materials. The...

Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis

Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis
by Jinghua Guo (Author), Xiaobo Chen (Author)


State-of-the-art renewable energy science research and applications Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis provides expert techniques for extracting hydrogen from water using transition metal oxides as catalysts. The basic processes of electrochemistry and photocatalysis for hydrogen production are described along with photocatalytic reactions and semiconductor photocatalysts, particularly metal oxides. This in-depth guide illustrates the corresponding crystal structure vs. electronic structure and optical properties vs. light absorption of transition metal oxides. Impurity and doped photocatalysts, integrated organic and inorganic systems, surface and interface chemistry, and nanostructure and morphology in photocatalysis applications are all...

Nanostructured Metal Oxides for Advanced Applications: Volume 1552 (MRS Proceedings)

Nanostructured Metal Oxides for Advanced Applications: Volume 1552 (MRS Proceedings)
by Alberto Vomiero (Editor), Federico Rosei (Editor), Xiao Wei Sun (Editor), Juan Ramon Morante (Editor)


Symposium S, "Nanostructured Metal Oxides for Advanced Applications," was held April 1-5 at the 2013 MRS Spring Meeting in San Francisco, California. Metal oxides represent an appealing and assorted class of materials, whose properties cover the entire range from metals to semiconductors to insulators and almost all aspects of material science, chemistry and physics in a very broad application area. In the past few years, progress has been made on the synthesis, structural, physical, and chemical characterization of self-assembled and hierarchically-assembled metal oxide nanostructures that exhibit size-dependent properties. In these proceedings, attention is paid to the synthesis, structural and functional characterization of self-assembled nanostructures and architectures of all metal...

Metal Oxide Nanomaterials for Chemical Sensors (Integrated Analytical Systems)

Metal Oxide Nanomaterials for Chemical Sensors (Integrated Analytical Systems)
by Michael A. Carpenter (Editor), Sanjay Mathur (Editor), Andrei Kolmakov (Editor)


This book presents a state-of-the-art summary and critical analysis of work recently performed in leading research laboratories around the world on the implementation of metal oxide nanomaterial research methodologies for the discovery and optimization of new sensor materials and sensing systems. The book provides a detailed description and analysis of (i) metal oxide nanomaterial sensing principles, (ii) advances in metal oxide nanomaterial synthesis/deposition methods, including colloidal, emulsification, and vapor processing techniques, (iii) analysis of techniques utilized for the development of low temperature metal oxide nanomaterial sensors, thus enabling a broader impact into sensor applications, (iv) advances, challenges and insights gained from the in situ/ex situ analysis of...

© 2014 BrightSurf.com