Science Current Events | Science News | Brightsurf.com
 

Metal oxides hold the key to cheap, green energy

April 19, 2012
BINGHAMTON, NY - Harnessing the energy of sunlight can be as simple as tuning the optical and electronic properties of metal oxides at the atomic level by making an artificial crystal or super-lattice 'sandwich' says a Binghamton University researcher in a new study published in the journal Physical Review B.

"Metal oxides are cheap, abundant and 'green,'" said Louis Piper, assistant professor of physics at Binghamton University. "And as the study proved, quite versatile. With the right touch, metal oxides can be tailored to meet all sorts of needs, which is good news for technological applications, specifically in energy generation and flat screen displays."

Here's how it works: semiconductors are an important class of materials in between metals and insulators. They are defined by the size of their band gap, which represents the energy required to excite an electron from the occupied shell to an unoccupied shell where it can conduct electricity. Visible light covers a range of 1 (infrared) to 3 (ultraviolet) electron volts. For transparent conductors, a large band gap is required, whereas for artificial photosynthesis, a band gap corresponding to green light is needed. Metal oxides provide a means of tailoring the band gap.

But while metal oxides are very good at electron conduction, they are very poor "hole" conductors. Holes refer to absence of electrons, and can conduct positive charge. To maximize their technologically potential, especially for artificial photosynthesis and invisible electronics, hole conducting metal oxides are required.

Knowing this, Piper has begun studying layered metal oxides systems, which can be combined to selectively 'dope' (replace a small number of one type of atom in the material), or 'tune' (control the size of the band gap). Recent work revealed that a super-lattice of two hole-conducting copper oxides could cover the entire solar spectrum. The goal is to improve the performance whilst using environmentally benign and cheap metal alternatives.

For instance, indium oxide is one of the most widely used oxides used in the production of coatings for flat screen displays and solar cells. It can conduct electrons really well and is transparent. But it is also rare and very expensive. Piper's current research is aimed towards using much cheaper tin oxide layers to get electron and hole conduction with optical transparency.

But according to Piper, his research shows that one glove will not fit all purposes.

"It's going to be a case of some serious detective work," said Piper. "We're working in a world where physics and chemistry overlap. And we've reached the theoretical limit of our calculations and fundamental processes. Now we need to audit those calculations and see where we're missing things. I believe we will find those missing pieces by playing around with metal oxides."

By reinforcing metal oxides' 'good bits' and downplaying the rough spots, Piper is convinced that the development of new and exciting types of metal oxides that can be tailored for specific applications are well within our reach.

"We're talking battery storage, fuel cells, touch screen technology and all types of computer switches," said Piper. "We're in the middle of a very important gold rush and its very exciting to be part of that race to strike it rich. But first we have to figure out what we don't know before we can figure out what we do. One thing's for sure: metal oxides hold the key. And I believe that we at Binghamton University can contribute to these efforts by doing good science and taking a morally conscious approach."

Binghamton University


Related Metal Oxides Current Events and Metal Oxides News Articles


Two-dimensional dirac materials: Structure, properties, and rarity
Graphene, a two-dimensional (2D) honeycomb sheet composed of carbon atoms, has attracted intense interests worldwide because of its outstanding properties and promising prospects in both basic and applied science.

Researchers increase energy density of lithium storage materials
The lithium ion battery currently is the most widespread battery technology. It is indispensable for devices, such as laptops, mobile phones or cameras.

New flexible films for touch screen applications achieve longer lasting display
Today, touch screens are everywhere, from smart phones and tablets, to computer monitors, to interactive digital signage and displays.

Reducing greenhouse gas emissions with a more effective carbon capture method
Trapping carbon dioxide (CO2) emissions from power plants and various industries could play a significant role in reducing greenhouse gas emissions in the future.

Worms lead way to test nanoparticle toxicity
The lowly roundworm is the star of an ambitious Rice University project to measure the toxicity of nanoparticles.

Waterloo chemist one step closer to a new generation of electric car battery
An ultra-thin nanomaterial is at the heart of a major breakthrough by Waterloo scientists who are in a global race to invent a cheaper, lighter and more powerful rechargeable battery for electric vehicles.

Atmospheric carbon dioxide used for energy storage products
Chemists and engineers at Oregon State University have discovered a fascinating new way to take some of the atmospheric carbon dioxide that's causing the greenhouse effect and use it to make an advanced, high-value material for use in energy storage products.

Good vibrations give electrons excitations that rock an insulator to go metallic
For more than 50 years, scientists have debated what turns particular oxide insulators, in which electrons barely move, into metals, in which electrons flow freely.

Water's reaction with metal oxides opens doors for researchers
A multi-institutional team has resolved a long-unanswered question about how two of the world's most common substances interact.

Self-assembly of gold nanoparticles into small clusters
Researchers at HZB in co-operation with Humboldt-Universität zu Berlin (HU, Berlin) have made an astonishing observation: they were investigating the formation of gold nanoparticles in a solvent and observed that the nanoparticles had not distributed themselves uniformly, but instead were self-assembled into small clusters.
More Metal Oxides Current Events and Metal Oxides News Articles

Metal Oxide Nanostructures as Gas Sensing Devices (Series in Sensors)

Metal Oxide Nanostructures as Gas Sensing Devices (Series in Sensors)
by G. Eranna (Author)


Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience. The book first covers current gas sensing tools and discusses the necessity for miniaturized sensors. It then focuses on the materials, devices, and techniques used for gas sensing applications, such as resistance and capacitance variations. The author addresses the issues of sensitivity, concentration, and temperature dependency as well as the response and recovery times crucial for sensors. He also presents techniques for synthesizing different metal...

Physics of Transition Metal Oxides (Springer Series in Solid-State Sciences) (v. 144)

Physics of Transition Metal Oxides (Springer Series in Solid-State Sciences) (v. 144)
by Sadamichi Maekawa (Author), Takami Tohyama (Author), Stewart Edward Barnes (Author), Sumio Ishihara (Author), Wataru Koshibae (Author), Giniyat Khaliullin (Author)


The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su­ perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal...

Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties (The International Series of Monographs on Chemistry)

Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties (The International Series of Monographs on Chemistry)
by P.A. Cox (Author)


Transition metal oxides form a series of compounds with a uniquely wide range of electronic properties. They have important applications as dielectrics, semiconductors and metals, and as materials for magnetic and optical uses. The discovery of high temperature superconductors has brought the attention of a wide scientific community to this area and has highlighted the problems involved in trying to understand transition metal oxides. The present book is not primarily about Tc superconductors, although their main properties are discussed in the final sections. The main aim is to describe the varied electronic behaviour shown by transition metal oxides, and to discuss the different types of theoretical models that have been proposed to interpret this behaviour.

The Surface Science of Metal Oxides

The Surface Science of Metal Oxides
by Victor E. Henrich (Author), P. A. Cox (Author)


This book is the first to give a comprehensive account of the fundamental properties of metal-oxide surfaces and their interaction with atoms, molecules and overlayers. The surfaces of metal oxides play a crucial role in an extremely wide range of phenomena, including the environmental degradation of high-Tc superconductors and catalysis. They are also increasingly important in processes such as the passivation of metal surfaces and gas sensing for pollution monitoring and control. As well as giving a general overview of the properties of metal-oxides, an extensive and thorough compilation of the research that has been performed on well characterised oxide surfaces is provided, thus making the book suitable for those graduate students and established researchers in materials science,...

MOS (Metal Oxide Semiconductor) Physics and Technology

MOS (Metal Oxide Semiconductor) Physics and Technology
by E. H. Nicollian (Author), J. R. Brews (Author)


Explains the theoretical and experimental foundations of the measurement of the electrical properties of the MOS system and the technology for controlling its properties. Emphasizes the silica and the silica-silicon interface. Provides a critical assessment of the literature, corrects incomplete or incorrect theoretical formulations, and gives critical comparisons of measurement methods. Contains information needed to grow an oxide, make an MOS capacitor array, and fabricate an integrated circuit with optimal performance and stability.

Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures (Springer Theses)

Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures (Springer Theses)
by Alex Frano (Author)


This thesis presents the results of resonant and non-resonant x-ray scattering experiments demonstrating the control of collective ordering phenomena in epitaxial nickel-oxide and copper-oxide based superlattices. Three outstanding results are reported: (1) LaNiO3-LaAlO3 superlattices with fewer than three consecutive NiO2 layers exhibit a novel spiral spin density wave, whereas superlattices with thicker nickel-oxide layer stacks remain paramagnetic. The magnetic transition is thus determined by the dimensionality of the electron system. The polarization plane of the spin density wave can be tuned by epitaxial strain and spatial confinement of the conduction electrons. (2) Further experiments on the same system revealed an unusual structural phase transition controlled by the overall...

Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy

Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy
by Shriram Ramanathan (Editor)


Thin Film Metal-Oxides provides a representative account of the fundamental structure-property relations in oxide thin films. Functional properties of thin film oxides are discussed in the context of applications in emerging electronics and renewable energy technologies. Readers will find a detailed description of deposition and characterization of metal oxide thin films, theoretical treatment of select properties and their functional performance in solid state devices, from leading researchers. Scientists and engineers involved with oxide semiconductors, electronic materials and alternative energy will find Thin Film Metal-Oxides a useful reference.  

Hot Metal Production by Smelting Reduction of Iron Oxide

Hot Metal Production by Smelting Reduction of Iron Oxide
by PHI Learning


This book, in its second edition, continues to offer a comprehensive treatise on smelting reduction of iron oxide—an emerging alternative method of producing hot metal without using coke. This technique is being increasingly used for hot metal production, which has till date, been dominated by the traditional blast furnace method. Shortage of coking coal, high cost of coke and the recent enforcement of stricter environmental regulations have resulted in the advent of smelting reduction as a supplementary method of hot metal production.

The book covers the details of this rapidly emerging method that holds particular relevance for countries like India, endowed with relatively large reserves of high grade iron ore but unfortunately, not matched by the availability of coking...

Metal Oxide Catalysis

Metal Oxide Catalysis
by S. David Jackson (Editor), Justin S. J. Hargreaves (Editor)


With its two-volume structure, this handbook and ready reference allows for comprehensive coverage of both characterization and applications, while uniform editing throughout ensures that the structure remains consistent.
The result is an up-to-date review of metal oxides in catalysis. The first volume covers a range of techniques that are used to characterize oxides, with each chapter written by an expert in the field. Volume 2 goes on to cover the use of metal oxides in catalytic reactions.
For all chemists and engineers working in the field of heterogeneous catalysis.


Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides (Springer Series in Materials Science)

Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides (Springer Series in Materials Science)
by A.I. Gusev (Author), A.A. Rempel (Author), A.J. Magerl (Author)


Deals with the influence of stoiciometry and order/disorder on materials properties. It summarizes the knowledge available in a comprehensive way.

© 2015 BrightSurf.com