Science Current Events | Science News | Brightsurf.com
 

The solar cell that also shines: Luminescent 'LED-type' design breaks efficiency record

April 20, 2012

To produce the maximum amount of energy, solar cells are designed to absorb as much light from the Sun as possible. Now researchers from the University of California, Berkeley, have suggested - and demonstrated - a counterintuitive concept: solar cells should be designed to be more like LEDs, able to emit light as well as absorb it. The Berkeley team will present its findings at the Conference on Lasers and Electro Optics (CLEO: 2012), to be held May 6-11 in San Jose, Calif.

"What we demonstrated is that the better a solar cell is at emitting photons, the higher its voltage and the greater the efficiency it can produce," says Eli Yablonovitch, principal researcher and UC Berkeley professor of electrical engineering.

Since 1961, scientists have known that, under ideal conditions, there is a limit to the amount of electrical energy that can be harvested from sunlight hitting a typical solar cell. This absolute limit is, theoretically, about 33.5 percent. That means that at most 33.5 percent of the energy from incoming photons will be absorbed and converted into useful electrical energy.

Yet for five decades, researchers were unable to come close to achieving this efficiency: as of 2010, the highest anyone had come was just more than 26 percent. (This is for flat-plate, "single junction" solar cells, which absorb light waves above a specific frequency. "Multi-junction" cells, which have multiple layers and absorb multiple frequencies, are able to achieve higher efficiencies.)

More recently, Yablonovitch and his colleagues were trying to understand why there has been such a large gap between the theoretical limit and the limit that researchers have been able to achieve. As they worked, a "coherent picture emerged," says Owen Miller, a graduate student at UC Berkeley and a member of Yablonovitch's group. They came across a relatively simple, if perhaps counterintuitive, solution based on a mathematical connection between absorption and emission of light.

"Fundamentally, it's because there's a thermodynamic link between absorption and emission," Miller says. Designing solar cells to emit light - so that photons do not become "lost" within a cell - has the natural effect of increasing the voltage produced by the solar cell. "If you have a solar cell that is a good emitter of light, it also makes it produce a higher voltage," which in turn increases the amount of electrical energy that can be harvested from the cell for each unit of sunlight, Miller says.

The theory that luminescent emission and voltage go hand in hand is not new. But the idea had never been considered for the design of solar cells before now, Miller continues.

This past year, a Bay area-based company called Alta Devices, co-founded by Yablonovitch, used the new concept to create a prototype solar cell made of gallium arsenide (GaAs), a material often used to make solar cells in satellites. The prototype broke the record, jumping from 26 percent to 28.3 percent efficiency. The company achieved this milestone, in part, by designing the cell to allow light to escape as easily as possible from the cell - using techniques that include, for example, increasing the reflectivity of the rear mirror, which sends incoming photons back out through the front of the device.

Solar cells produce electricity when photons from the Sun hit the semiconductor material within a cell. The energy from the photons knocks electrons loose from this material, allowing the electrons to flow freely. But the process of knocking electrons free can also generate new photons, in a process called luminescence. The idea behind the novel solar cell design is that these new photons - which do not come directly from the Sun - should be allowed to escape from the cell as easily as possible.

"The first reaction is usually, why does it help [to let these photons escape]?" Miller says. "Don't you want to keep [the photons] in, where maybe they could create more electrons?" However, mathematically, allowing the new photons to escape increases the voltage that the cell is able to produce.

The work is "a good, useful way" of determining how scientists can improve the performance of solar cells, as well as of finding creative new ways to test and study solar cells, says Leo Schowalter of Crystal IS, Inc. and visiting professor at Rensselaer Polytechnic Institute, who is chairman of the CLEO committee on LEDs, photovoltaics, and energy-efficient photonics.

Yablonovitch says he hopes researchers will be able to use this technique to achieve efficiencies close to 30 percent in the coming years. And since the work applies to all types of solar cells, the findings have implications throughout the field.

Optical Society of America


Related Solar Cells Current Events and Solar Cells News Articles


Beating the limits of the light microscope, one photon at a time
The world's most advanced light microscopes allow us to see single molecules, proteins, viruses and other very small biological structures. But even the best microscopes have their limits.

Light can 'heal' defects in new solar cell materials
A family of compounds known as perovskites, which can be made into thin films with many promising electronic and optical properties, has been a hot research topic in recent years. But although these materials could potentially be highly useful in applications such as solar cells, some limitations still hamper their efficiency and consistency.

Virginia Tech researchers in the Antarctic discover new facets of space weather
A team of National Science Foundation (NSF)-supported researchers at the Virginia Polytechnic Institute and State University (Virginia Tech) discovered new evidence about how the Earth's magnetic field interacts with solar wind, almost as soon as they finished installing six data-collection stations across East Antarctic Plateau last January.

ORNL demonstrates large-scale technique to produce quantum dots
A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory.

Fighting the Zika virus with the power of supercomputing
Rutgers is taking a leading role in an IBM-sponsored World Community Grid project that will use supercomputing power to identify potential drug candidates to cure the Zika virus.

Cooling, time in the dark preserve perovskite solar power
A new study has found both the cause and a solution for the pesky tendency of perovskite solar cells to degrade in sunlight, a research breakthrough potentially removing one roadblock to commercialization for this promising technology.

This 'nanocavity' may improve ultrathin solar panels, video cameras and more
The future of movies and manufacturing may be in 3-D, but electronics and photonics are going 2-D; specifically, two-dimensional semiconducting materials.

Under Pressure: New technique could make large, flexible solar panels more feasible
A new, high-pressure technique may allow the production of huge sheets of thin-film silicon semiconductors at low temperatures in simple reactors at a fraction of the size and cost of current technology.

New research shows how silver could be the key to gold-standard flexible gadgets
Research published in the journals Materials Today Communications and Scientific Reports has described how silver nanowires are proving to be the ideal material for flexible, touch-screen technologies while also exploring how the material can be manipulated to tune its performance for other applications.

Stanford scientists improve perovskite solar-cell absorbers by giving them a squeeze
Solar cells made of artificial metallic crystalline structures called perovskites have shown great promise in recent years. Now Stanford University scientists have found that applying pressure can change the properties of these inexpensive materials and how they respond to light.
More Solar Cells Current Events and Solar Cells News Articles

Build A Solar Hydrogen Fuel Cell System

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)


Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology. Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including: ESPMs (Electrolyzer Specific Photovoltaic Modules) – 40 watt solar panels designed specifically to run electrolyzers efficiently; a 40-80 watt electrolyzer for intermittant power from renewable energy sources such as solar and wind; and, a 6-12...

The Physics of Solar Cells (Properties of Semiconductor Materials)

The Physics of Solar Cells (Properties of Semiconductor Materials)
by Jenny Nelson (Author)


This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included. Contents: Photons In, Electrons Out: Basic Principles of PV; Electrons and Holes in Semiconductors; Generation and Recombination; Junctions; Analysis of the p n Junction; Monocrystalline Solar Cells; Thin Film...

Build Your Own Solar Panel: Generate Electricity from the Sun.

Build Your Own Solar Panel: Generate Electricity from the Sun.
by Phillip Hurley (Author)


Whether you're trying to get off the grid, or you just like to experiment, Build Your Own Solar Panel has all the information you need to build your own photovoltaic panel to generate electricity from the sun. Now available for the first time in print, this revised and expanded edition has easy-to-follow directions, and over 150 detailed photos and illustrations. Lists of materials, tools, and suppliers of PV cells are included. Every-day tools are all that you need to complete these projects.
Build Your Own Solar Panel will show you how to:
Design and build PV panels,
Customize panel output,
Make tab and bus ribbon,
Solder cell connections,
Wire a photovoltaic panel,
Purchase solar cells,
Test and rate PV cells,
Repair damaged solar cells,
Work...

Solar Cell Device Physics, Second Edition

Solar Cell Device Physics, Second Edition
by Stephen Fonash (Author)


There has been an enormous infusion of new ideas in the field of solar cells over the last 15 years; discourse on energy transfer has gotten much richer, and nanostructures and nanomaterials have revolutionized the possibilities for new technological developments. However, solar energy cannot become ubiquitous in the world's power markets unless it can become economically competitive with legacy generation methods such as fossil fuels.

The new edition of Dr. Stephen Fonash's definitive text points the way toward greater efficiency and cheaper production by adding coverage of cutting-edge topics in plasmonics, multi-exiton generation processes, nanostructures and nanomaterials such as quantum dots. The book's new structure improves readability by shifting many detailed equations to...

Solar Cell Radiation Handbook: Third Edition

Solar Cell Radiation Handbook: Third Edition
by National Aeronautics and Space Administration (Author)


This handbook is intended to furnish the reader with the necessary tools to permit him to predict the degradation of solar cell electrical performance in any given space radiation environment. It begins with an introduction to solar cell theory, describing how cells are manufactured and how they are modeled mathematically. The interaction of energetic charged particle radiation with solar cells is discussed in detail and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a Fortran listing of the program is included. Finally, an extensive body of data detailing the...

Organic Solar Cells: Fundamentals, Devices, and Upscaling

Organic Solar Cells: Fundamentals, Devices, and Upscaling
by Barry P. Rand (Editor), Henning Richter (Editor)


Organic photovoltaic (OPV) cells have the potential to make a significant contribution to the increasing energy needs of the future. In this book, 15 chapters written by selected experts explore the required characteristics of components present in an OPV device, such as transparent electrodes, electron- and hole-conducting layers, as well as electron donor and acceptor materials. Design, preparation, and evaluation of these materials targeting highest performance are discussed. This includes contributions on modeling down to the molecular level to device-level electrical and optical testing and modeling, as well as layer morphology control and characterization. The integration of the different components in device architectures suitable for mass production is described. Finally, the...

Solar Cell Array Design Handbook: The Principles and Technology of Photovoltaic Energy Conversion

Solar Cell Array Design Handbook: The Principles and Technology of Photovoltaic Energy Conversion
by Hans S. Rauschenbach (Author)




Basic Solar Component Guide

Basic Solar Component Guide


If you want to learn about the basics of solar panels and the components that work with them, then this guide is for you. The information contained in this guide is from my own experience with setting up a basic solar system. It covers the basics of the solar panels, batteries, inverters, charge controllers, wire gauge and formulas.

The Solar Wizard - FREE Electricity...Forever! Save BIG Electric $$$$ with this fun project. Check out the Easy Steps and Clear Plans in this incredible Manual!

The Solar Wizard - FREE Electricity...Forever! Save BIG Electric $$$$ with this fun project. Check out the Easy Steps and Clear Plans in this incredible Manual!
by Gordon Weigle (Author), Cecil "Ray" Freeman Jr. (Editor)


Create your own Solar Wizard - discover how to capture FREE Electricity from the Sun! Learn how to SLASH electric bills and save BIG Dollars with this incredible manual. It's packed full of high-quality illustrations and simple step-by-step instructions. Best of all, this is a fun project; one you can easily crank out in a few leisurely weekends. All you need are the few tools found in most home workshops. Everything's easy here - anyone can do it - you can't go wrong. The Solar Wizard is a popular, proven design - with over 31,000 manuals sold by mail (at $39.98 each) since 2009. Friends kept bugging me to bring it to Amazon; so here it is. We're talking endless, high-energy, and pollution-free electric power here. Now, saving money while going GREEN has never been easier. Compared to...

Solar Energy for Beginners: The Complete Guide to Solar Power Systems, Panels & Cells

Solar Energy for Beginners: The Complete Guide to Solar Power Systems, Panels & Cells
by Catherine Gregory (Author)


Understanding Solar EnergySolar energy is free and it is located everywhere where the sun is shining. However, harnessing the energy of sun in order to convert it to electricity or heat is not an easy task. You need to use the right equipment as well as design basics in order to harness the energy of the sun effectively.There are many benefits of using solar energy to heat up or power your home. One of the most important benefits of using this renewable energy is that you can help save the environment. This green energy can also help you reduce the cost of your energy bill by as much as half. However, if you opt for solar energy to power your house, you need to educate yourself about the many options that you have. Thus, this book will serve as your guide.With this book, you can learn the...

© 2017 BrightSurf.com