Science Current Events | Science News | Brightsurf.com
 

The solar cell that also shines: Luminescent 'LED-type' design breaks efficiency record

April 20, 2012

To produce the maximum amount of energy, solar cells are designed to absorb as much light from the Sun as possible. Now researchers from the University of California, Berkeley, have suggested - and demonstrated - a counterintuitive concept: solar cells should be designed to be more like LEDs, able to emit light as well as absorb it. The Berkeley team will present its findings at the Conference on Lasers and Electro Optics (CLEO: 2012), to be held May 6-11 in San Jose, Calif.

"What we demonstrated is that the better a solar cell is at emitting photons, the higher its voltage and the greater the efficiency it can produce," says Eli Yablonovitch, principal researcher and UC Berkeley professor of electrical engineering.

Since 1961, scientists have known that, under ideal conditions, there is a limit to the amount of electrical energy that can be harvested from sunlight hitting a typical solar cell. This absolute limit is, theoretically, about 33.5 percent. That means that at most 33.5 percent of the energy from incoming photons will be absorbed and converted into useful electrical energy.

Yet for five decades, researchers were unable to come close to achieving this efficiency: as of 2010, the highest anyone had come was just more than 26 percent. (This is for flat-plate, "single junction" solar cells, which absorb light waves above a specific frequency. "Multi-junction" cells, which have multiple layers and absorb multiple frequencies, are able to achieve higher efficiencies.)

More recently, Yablonovitch and his colleagues were trying to understand why there has been such a large gap between the theoretical limit and the limit that researchers have been able to achieve. As they worked, a "coherent picture emerged," says Owen Miller, a graduate student at UC Berkeley and a member of Yablonovitch's group. They came across a relatively simple, if perhaps counterintuitive, solution based on a mathematical connection between absorption and emission of light.

"Fundamentally, it's because there's a thermodynamic link between absorption and emission," Miller says. Designing solar cells to emit light - so that photons do not become "lost" within a cell - has the natural effect of increasing the voltage produced by the solar cell. "If you have a solar cell that is a good emitter of light, it also makes it produce a higher voltage," which in turn increases the amount of electrical energy that can be harvested from the cell for each unit of sunlight, Miller says.

The theory that luminescent emission and voltage go hand in hand is not new. But the idea had never been considered for the design of solar cells before now, Miller continues.

This past year, a Bay area-based company called Alta Devices, co-founded by Yablonovitch, used the new concept to create a prototype solar cell made of gallium arsenide (GaAs), a material often used to make solar cells in satellites. The prototype broke the record, jumping from 26 percent to 28.3 percent efficiency. The company achieved this milestone, in part, by designing the cell to allow light to escape as easily as possible from the cell - using techniques that include, for example, increasing the reflectivity of the rear mirror, which sends incoming photons back out through the front of the device.

Solar cells produce electricity when photons from the Sun hit the semiconductor material within a cell. The energy from the photons knocks electrons loose from this material, allowing the electrons to flow freely. But the process of knocking electrons free can also generate new photons, in a process called luminescence. The idea behind the novel solar cell design is that these new photons - which do not come directly from the Sun - should be allowed to escape from the cell as easily as possible.

"The first reaction is usually, why does it help [to let these photons escape]?" Miller says. "Don't you want to keep [the photons] in, where maybe they could create more electrons?" However, mathematically, allowing the new photons to escape increases the voltage that the cell is able to produce.

The work is "a good, useful way" of determining how scientists can improve the performance of solar cells, as well as of finding creative new ways to test and study solar cells, says Leo Schowalter of Crystal IS, Inc. and visiting professor at Rensselaer Polytechnic Institute, who is chairman of the CLEO committee on LEDs, photovoltaics, and energy-efficient photonics.

Yablonovitch says he hopes researchers will be able to use this technique to achieve efficiencies close to 30 percent in the coming years. And since the work applies to all types of solar cells, the findings have implications throughout the field.

Optical Society of America


Related Solar Cells Current Events and Solar Cells News Articles


Beating the limits of the light microscope, one photon at a time
The world's most advanced light microscopes allow us to see single molecules, proteins, viruses and other very small biological structures. But even the best microscopes have their limits.

Light can 'heal' defects in new solar cell materials
A family of compounds known as perovskites, which can be made into thin films with many promising electronic and optical properties, has been a hot research topic in recent years. But although these materials could potentially be highly useful in applications such as solar cells, some limitations still hamper their efficiency and consistency.

Virginia Tech researchers in the Antarctic discover new facets of space weather
A team of National Science Foundation (NSF)-supported researchers at the Virginia Polytechnic Institute and State University (Virginia Tech) discovered new evidence about how the Earth's magnetic field interacts with solar wind, almost as soon as they finished installing six data-collection stations across East Antarctic Plateau last January.

ORNL demonstrates large-scale technique to produce quantum dots
A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory.

Fighting the Zika virus with the power of supercomputing
Rutgers is taking a leading role in an IBM-sponsored World Community Grid project that will use supercomputing power to identify potential drug candidates to cure the Zika virus.

Cooling, time in the dark preserve perovskite solar power
A new study has found both the cause and a solution for the pesky tendency of perovskite solar cells to degrade in sunlight, a research breakthrough potentially removing one roadblock to commercialization for this promising technology.

This 'nanocavity' may improve ultrathin solar panels, video cameras and more
The future of movies and manufacturing may be in 3-D, but electronics and photonics are going 2-D; specifically, two-dimensional semiconducting materials.

Under Pressure: New technique could make large, flexible solar panels more feasible
A new, high-pressure technique may allow the production of huge sheets of thin-film silicon semiconductors at low temperatures in simple reactors at a fraction of the size and cost of current technology.

New research shows how silver could be the key to gold-standard flexible gadgets
Research published in the journals Materials Today Communications and Scientific Reports has described how silver nanowires are proving to be the ideal material for flexible, touch-screen technologies while also exploring how the material can be manipulated to tune its performance for other applications.

Stanford scientists improve perovskite solar-cell absorbers by giving them a squeeze
Solar cells made of artificial metallic crystalline structures called perovskites have shown great promise in recent years. Now Stanford University scientists have found that applying pressure can change the properties of these inexpensive materials and how they respond to light.
More Solar Cells Current Events and Solar Cells News Articles

Build Your Own Solar Panel: Generate Electricity from the Sun.

Build Your Own Solar Panel: Generate Electricity from the Sun.
by Phillip Hurley (Author)


Whether you're trying to get off the grid, or you just like to experiment, Build Your Own Solar Panel has all the information you need to build your own photovoltaic panel to generate electricity from the sun. Now available for the first time in print, this revised and expanded edition has easy-to-follow directions, and over 150 detailed photos and illustrations. Lists of materials, tools, and suppliers of PV cells are included. Every-day tools are all that you need to complete these projects.
Build Your Own Solar Panel will show you how to:
Design and build PV panels,
Customize panel output,
Make tab and bus ribbon,
Solder cell connections,
Wire a photovoltaic panel,
Purchase solar cells,
Test and rate PV cells,
Repair damaged solar cells,
Work...

The Physics of Solar Cells (Properties of Semiconductor Materials)

The Physics of Solar Cells (Properties of Semiconductor Materials)
by Jenny Nelson (Author)


This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included. Contents: Photons In, Electrons Out: Basic Principles of PV; Electrons and Holes in Semiconductors; Generation and Recombination; Junctions; Analysis of the p n Junction; Monocrystalline Solar Cells; Thin Film...

Build A Solar Hydrogen Fuel Cell System

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)


Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology. Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including: ESPMs (Electrolyzer Specific Photovoltaic Modules) – 40 watt solar panels designed specifically to run electrolyzers efficiently; a 40-80 watt electrolyzer for intermittant power from renewable energy sources such as solar and wind; and, a 6-12...

Solar Electricity Handbook - 2015 Edition: A simple, practical guide to solar energy - designing and installing solar PV systems.

Solar Electricity Handbook - 2015 Edition: A simple, practical guide to solar energy - designing and installing solar PV systems.
by Michael Boxwell (Author)


The Solar Electricity Handbook - 2015 Edition, is a simple, practical guide to using electric solar panels and designing and installing photovoltaic PV systems. Now in its ninth edition, the book assumes no previous knowledge of solar electric systems. The book explains how solar panels work and how they can be used. It explains the advantages of solar energy and the drawbacks that you need to take into account when designing a solar power system. As well as explaining the underlying principles, it provides a step-by-step guide so that you can successfully design and install a photovoltaic solar system from scratch. Unlike many guides, The Solar Electricity Handbook explains the principles behind the technology, allowing the reader to design solar energy systems with confidence. The book...

Solar II: How to Design, Build and Set Up Photovoltaic Components and Solar Electric Systems

Solar II: How to Design, Build and Set Up Photovoltaic Components and Solar Electric Systems
by Phillip Hurley (Author)


Now that you've built your solar panels, how do you set up a photovoltaic system and plug in? In Solar II, Phillip Hurley, author of Build Your Own Solar Panel, will show you how to:
Calculate daily electrical usage and needs
Plan and size your solar electric system
Build racks and charge controllers
Mount and orient PV panels
Wire solar panel arrays
Make a ventilated battery box
Wire battery arrays for solar panels
Install an inverter
Maintain solar batteries for optimum life and performance
Make your own combiner box, bus bars, and DC and AC service boxes
Solar II includes easy-to-follow directions with over 150 black & white photos, illustrations and schematics.

Solar Cell Device Physics, Second Edition

Solar Cell Device Physics, Second Edition
by Stephen Fonash (Author)


There has been an enormous infusion of new ideas in the field of solar cells over the last 15 years; discourse on energy transfer has gotten much richer, and nanostructures and nanomaterials have revolutionized the possibilities for new technological developments. However, solar energy cannot become ubiquitous in the world's power markets unless it can become economically competitive with legacy generation methods such as fossil fuels.

The new edition of Dr. Stephen Fonash's definitive text points the way toward greater efficiency and cheaper production by adding coverage of cutting-edge topics in plasmonics, multi-exiton generation processes, nanostructures and nanomaterials such as quantum dots. The book's new structure improves readability by shifting many detailed equations to...

Physics of Solar Cells: From Basic Principles to Advanced Concepts

Physics of Solar Cells: From Basic Principles to Advanced Concepts
by Peter W?rfel (Author)


Based on the highly regarded and extremely successful first edition, this thoroughly revised, updated and expanded edition contains the latest knowledge on the mechanisms of solar energy conversion.
The textbook describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency.
Requiring no more than standard physics knowledge, the book enables both students and researchers to understand the factors driving conversion efficiency and to apply this knowledge to their own solar cell development.
New exercises after each chapter help students to consolidate their freshly acquired knowledge, while the book also serves as a reference for researchers already working...

Quantum Dot Solar Cells (Lecture Notes in Nanoscale Science and Technology)

Quantum Dot Solar Cells (Lecture Notes in Nanoscale Science and Technology)
by Jiang Wu (Editor), Zhiming M. Wang (Editor)


The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of various quantum dot solar cell designs, including quantum dot intermediate band solar cells, hot electron quantum dot solar cells, quantum-dot sensitized solar cells, colloidal quantum dot solar cells,...

Materials Concepts for Solar Cells (Energy Futures)

Materials Concepts for Solar Cells (Energy Futures)
by Thomas Dittrich (Author)


"The book offers a well-balanced treatment of physical principles and materials-related concepts of solar cells, and considers both classical and new trends in this rapidly developing field . . . The book is perfectly structured, with a concise summary of the most important points provided for every chapter, and the description of the concepts well complemented by the tasks. I strongly recommend this book for students and scientists attracted to the renewable energy and the materials science fields." Andrey Rogach Chair Professor of Photonic Materials City University of Hong Kong “The book is of good pedagogical value. Students as well as teachers can make use of this either as a main textbook or as a support for their lessons. In general, the book is well-written and provides a solid...

Physics of Solar Cells: From Basic Principles to Advanced Concepts (No Longer Used)

Physics of Solar Cells: From Basic Principles to Advanced Concepts (No Longer Used)
by Peter W?rfel (Author), Uli W?rfel (Author)


The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages.
It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible.
With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics...

© 2016 BrightSurf.com