Science Current Events | Science News |

New graphene-based material could revolutionize electronics industry

April 30, 2012

The most transparent, lightweight and flexible material ever for conducting electricity has been invented by a team from the University of Exeter. Called GraphExeter, the material could revolutionise the creation of wearable electronic devices, such as clothing containing computers, phones and MP3 players.

GraphExeter could also be used for the creation of 'smart' mirrors or windows, with computerised interactive features. Since this material is also transparent over a wide light spectrum, it could enhance by more than 30% the efficiency of solar panels.

Adapted from graphene, GraphExeter is much more flexible than indium tin oxide (ITO), the main conductive material currently used in electronics. ITO is becoming increasingly expensive and is a finite resource, expected to run out in 2017.

These research findings are published in the journal Advanced Materials, a leading journal in materials science.

At just one-atom-thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for flexible electronics. This has been a challenge because of its sheet resistance, which limits its conductivity. Until now, no-one has been able to produce a viable alternative to ITO.

To create GraphExeter, the Exeter team sandwiched molecules of ferric chloride between two layers of graphene. Ferric chloride enhances the electrical conductivity of graphene, without affecting the material's transparency.

The material was produced by a team from the University of Exeter's Centre for Graphene Science. The research team is now developing a spray-on version of GraphExeter, which could be applied straight onto fabrics, mirrors and windows.

Lead researcher, University of Exeter engineer Dr Monica Craciun said: "GraphExeter could revolutionise the electronics industry. It outperforms any other carbon-based transparent conductor used in electronics and could be used for a range of applications, from solar panels to 'smart' teeshirts. We are very excited about the potential of this material and look forward to seeing where it can take the electronics industry in the future."


The Centre for Graphene Science brings together the Universities of Exeter and Bath in internationally-leading research in graphene. The Centre is bridging the gap between the scientific development and industrial application of this revolutionary new technology.

This research was funded by the EPSRC and Royal Society.

University of Exeter

Related Graphene Current Events and Graphene News Articles

New tabletop instrument tests electron mobility for next-generation electronics
The National High Magnetic Field Laboratory, with facilities in Florida and New Mexico, offers scientists access to enormous machines that create record-setting magnetic fields.

Rice de-icer gains anti-icing properties
Rice University scientists have advanced their graphene-based de-icer to serve a dual purpose. The new material still melts ice from wings and wires when conditions get too cold. But if the air is above 7 degrees Fahrenheit, ice won't form at all.

Graphene makes rubber more rubbery
In an article published in Carbon, Dr Aravind Vijayaraghavan and Dr Maria Iliut from Manchester have shown that adding a very small amount of graphene, the world's thinnest and strongest material, to rubber films can increase both their strength and the elasticity by up to 50%.

Researchers demonstrate size quantization of Dirac fermions in graphene
Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Graphene: A quantum of current
In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms arranged in a honeycomb lattice.

New type of graphene-based transistor will increase the clock speed of processors
Scientists have developed a new type of graphene-based transistor and using modelling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices.

This 'nanocavity' may improve ultrathin solar panels, video cameras and more
The future of movies and manufacturing may be in 3-D, but electronics and photonics are going 2-D; specifically, two-dimensional semiconducting materials.

Microwaved nanoribbons may bolster oil and gas wells
Wellbores drilled to extract oil and gas can be dramatically reinforced with a small amount of modified graphene nanoribbons added to a polymer and microwaved, according to Rice University researchers.

New research shows how silver could be the key to gold-standard flexible gadgets
Research published in the journals Materials Today Communications and Scientific Reports has described how silver nanowires are proving to be the ideal material for flexible, touch-screen technologies while also exploring how the material can be manipulated to tune its performance for other applications.

Graphene flakes to calm synapses
The laboratory of SISSA's Laura Ballerini in collaboration with the University of Trieste, the University of Manchester and the University of Castilla -la Mancha, has discovered a new approach to modulating synapses.
More Graphene Current Events and Graphene News Articles

Graphene: A New Paradigm in Condensed Matter and Device Physics

Graphene: A New Paradigm in Condensed Matter and Device Physics
by E. L. Wolf (Author)

The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law.

The book describes the unusual physics of the material, that it offers linear rather than parabolic energy bands. The Dirac-like electron energy bands lead to high constant carrier speed, similar to light photons. The...


by Caravan Publishing

A scientific genius escapes from Soviet Russia with his wife. They have nothing, but the help of a stranger starts him on his way to accumulating a fortune, with a steady flow of inventions. He finds graphene, a miracle material that has almost unimaginable qualities, but can only be extracted in minute quantities. Leonid sees the potential of the product for the entire world and, together with Marina, his daughter, he develops a means to produce the material cheaply enough to compete with almost every existing product that it can replace. He fails to reckon with big business, and the predators who are so fixated on their own profit that they will stop at nothing to remove the threat that he and graphene present.
In this fast-paced story of genius versus business, Nicole Stuart...

Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World

Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World
by Mark Miodownik (Author), Sarah Scarlett (Author)

New York Times Bestseller • New York Times Notable Book 2014 • Winner of the Royal Society Winton Prize for Science Books

“A thrilling account of the modern material world.” —Wall Street Journal

"Miodownik, a materials scientist, explains the history and science behind things such as paper, glass, chocolate, and concrete with an infectious enthusiasm." —Scientific American

Why is glass see-through? What makes elastic stretchy? Why does any material look and behave the way it does? These are the sorts of questions that renowned materials scientist Mark Miodownik constantly asks himself. Miodownik studies objects as ordinary as an envelope and as unexpected as concrete cloth, uncovering the fascinating secrets that hold together our physical...

The Graphene Handbook (2016 edition)

The Graphene Handbook (2016 edition)
by Ron Mertens (Author)

The Graphene Handbook is a comprehensive guide to graphene technology, industry and market brought to you by GrapheneInfo, the world's leading graphene publication. The Graphene Handbook provides a great introduction to the world of graphene and covers everything you need to know about the graphene industry, market and technology. It is an invaluable guide for material engineers, business developers, researchers, equipment vendors, graphene material companies, private investors and anyone who wants to learn more about graphene today and in the future.

The Chemistry Book: From Gunpowder to Graphene, 250 Milestones in the History of Chemistry (Sterling Milestones)

The Chemistry Book: From Gunpowder to Graphene, 250 Milestones in the History of Chemistry (Sterling Milestones)
by Derek B Lowe (Author)

From atoms and fluorescent pigments to sulfa drug synthesis and buckyballs, this lush and authoritative chronology presents 250 milestones in the world of chemistry. As the "central science" that bridges biology and physics, chemistry plays an important role in countless medical and technological advances. Covering entertaining stories and unexpected applications, chemist and journalist Derek B. Lowe traces the most important—and surprising—chemical discoveries.

An Introduction to Graphene and Carbon Nanotubes

An Introduction to Graphene and Carbon Nanotubes
by John E. Proctor (Author), Daniel Melendrez Armada (Author), Aravind Vijayaraghavan (Author)

Carbon nanotubes and graphene have been the subject of intense scientific research since their relatively recent discoveries. This book introduces the reader to the science behind these rapidly developing fields, and covers both the fundamentals and latest advances. Uniquely, this book covers the topics in a pedagogical manner suitable for undergraduate students. The book also uses the simple systems of nanotubes and graphene as models to teach concepts such as molecular orbital theory, tight binding theory and the Laue treatment of diffraction. Suitable for undergraduate students with a working knowledge of basic quantum mechanics, and for postgraduate researchers commencing their studies into the field, this book will equip the reader to critically evaluate the physical properties and...


by Larry Rhodes (Author)

Before airplanes crossed the oceans, gigantic gas-filled airships cruised serenely between Europe and North and South America. The horrific 1937 crash of the Hindenburg, the pride of Nazi Germany, ended that phase of passenger travel, and more than twenty years passed before heavier-than-air passenger airliners could cross the Atlantic again. In Graphene LTA, Alexandra Shultz's dream of reviving that lost age of air travel comes true when she enters a proposal for a Lighter-Than-Air (LTA) cruise ship into an entrepreneur's contest, and billionaire venture capitalist Max Brita becomes a believer. Together they take the LTA concept and the miraculous new material Graphene into products and vessels the original dirigible designers never would have dreamt.

The Graphene Parent: Parenting with Strength, Flexibility, and Transparency

The Graphene Parent: Parenting with Strength, Flexibility, and Transparency
by Brett Kleffner (Author), Zoe LeDonne (Illustrator)

While the compound graphene is used mostly in manufacturing and referenced by engineers, it is a spot-on metaphor for excellent parenting because graphene is strong, transparent, and flexible—like you. ALL PROFITS FROM SALE OF THIS BOOK GO TO ORPHANS LIVING IN ETHIOPIA. The Graphene Parent inspires parents to live from the paradigms of love and joy. This collection of insights offers simple strategies to help parents maintain focus while in the trenches of parenting. The contents of this book also help parents embrace the infinitely complex challenge of raising well-adjusted children. Almost twenty years of experience as a dad has taught Kleffner much, and has shown him that he still has much to learn. Kleffner approaches writing with the understanding that we are human, doing our best...

Graphene: Fundamentals, Devices, and Applications

Graphene: Fundamentals, Devices, and Applications
by Serhii Shafraniuk (Author)

Graphene is the first example of two-dimensional materials and is the most important growth area of contemporary research. It forms the basis for new nanoelectronic applications. Graphene, which comprises field-effect structures, has remarkable physical properties. This book focuses on practical applications determined by the unique properties of graphene. Basic concepts are elucidated by end-of-chapter problems, the answers to which are provided in the accompanying solutions manual. The mechanisms of electric and thermal transport in the gated graphene, interface phenomena, quantum dots, non-equilibrium states, scattering and dissipation, as well as coherent transport in graphene junctions are considered in detail in the book. Detailed analyses and comparison between theory and...

Graphene: Fundamentals and emergent applications

Graphene: Fundamentals and emergent applications
by Jamie H. Warner (Author), Franziska Schaffel (Author), Mark Rummeli (Author), Alicja Bachmatiuk (Author)

Providing fundamental knowledge necessary to understand graphene’s atomic structure, band-structure, unique properties and an overview of groundbreaking current and emergent applications, this new handbook is essential reading for materials scientists, chemists and physicists. Since the 2010 physics Nobel Prize awarded to Geim and Novosolev for their groundbreaking work isolating graphene from bulk graphite, there has been a huge surge in interest in the area. This has led to a large number of news books on graphene. However, for such a vast inflow of new entrants, the current literature is surprisingly slight, focusing exclusively on current research or books on previous "hot topic" allotropes of carbon. This book covers fundamental groundwork of the structure, property,...

© 2017