Science Current Events | Science News |

New graphene-based material could revolutionize electronics industry

April 30, 2012
The most transparent, lightweight and flexible material ever for conducting electricity has been invented by a team from the University of Exeter. Called GraphExeter, the material could revolutionise the creation of wearable electronic devices, such as clothing containing computers, phones and MP3 players.

GraphExeter could also be used for the creation of 'smart' mirrors or windows, with computerised interactive features. Since this material is also transparent over a wide light spectrum, it could enhance by more than 30% the efficiency of solar panels.

Adapted from graphene, GraphExeter is much more flexible than indium tin oxide (ITO), the main conductive material currently used in electronics. ITO is becoming increasingly expensive and is a finite resource, expected to run out in 2017.

These research findings are published in the journal Advanced Materials, a leading journal in materials science.

At just one-atom-thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for flexible electronics. This has been a challenge because of its sheet resistance, which limits its conductivity. Until now, no-one has been able to produce a viable alternative to ITO.

To create GraphExeter, the Exeter team sandwiched molecules of ferric chloride between two layers of graphene. Ferric chloride enhances the electrical conductivity of graphene, without affecting the material's transparency.

The material was produced by a team from the University of Exeter's Centre for Graphene Science. The research team is now developing a spray-on version of GraphExeter, which could be applied straight onto fabrics, mirrors and windows.

Lead researcher, University of Exeter engineer Dr Monica Craciun said: "GraphExeter could revolutionise the electronics industry. It outperforms any other carbon-based transparent conductor used in electronics and could be used for a range of applications, from solar panels to 'smart' teeshirts. We are very excited about the potential of this material and look forward to seeing where it can take the electronics industry in the future."


The Centre for Graphene Science brings together the Universities of Exeter and Bath in internationally-leading research in graphene. The Centre is bridging the gap between the scientific development and industrial application of this revolutionary new technology.

This research was funded by the EPSRC and Royal Society.

University of Exeter

Related Graphene Current Events and Graphene News Articles

Graphene enables all-electrical control of energy flow from light emitters
At the heart of lasers, displays and other light-emitting devices lies the emission of photons.

Laser-induced graphene 'super' for electronics
Rice University scientists advanced their recent development of laser-induced graphene (LIG) by producing and testing stacked, three-dimensional supercapacitors, energy-storage devices that are important for portable, flexible electronics.

A new step towards using graphene in electronic applications
Few materials have received as much attention from the scientific world or have raised so many hopes with a view to their potential deployment in new applications as graphene has.

Waterloo chemist one step closer to a new generation of electric car battery
An ultra-thin nanomaterial is at the heart of a major breakthrough by Waterloo scientists who are in a global race to invent a cheaper, lighter and more powerful rechargeable battery for electric vehicles.

Graphene plasmons go ballistic
Squeezing light into tiny circuits and controlling its flow electrically is a holy grail that has become a realistic scenario thanks to the discovery of graphene.

GraphExeter defies the Achilles heel of 'wonder material' graphene
A resilience to extreme conditions by the most transparent, lightweight and flexible material for conducting electricity could help revolutionise the electronic industry, according to a new study.

Fractional quantum Hall effect: Experimental progress and quantum computing applications
The Hall effect, discovered in 1879, is observable when a Hall voltage perpendicular to the current is produced across a conductor under a magnetic field. Although the Hall effect was discovered in a sheet of gold leaf by Edwin Hall, this effect does not require a two-dimensional condition.

'Flying carpet' technique uses graphene to deliver one-two punch of anticancer drugs
An international team of researchers has developed a drug delivery technique that utilizes graphene strips as "flying carpets" to deliver two anticancer drugs sequentially to cancer cells, with each drug targeting the distinct part of the cell where it will be most effective.

Freshmen-level chemistry solves the solubility mystery of graphene oxide films
A Northwestern University-led team recently found the answer to a mysterious question that has puzzled the materials science community for years--and it came in the form of some surprisingly basic chemistry.

Piezoelectricity in a 2-D semiconductor
A door has been opened to low-power off/on switches in micro-electro-mechanical systems (MEMS) and nanoelectronic devices, as well as ultrasensitive bio-sensors, with the first observation of piezoelectricity in a free standing two-dimensional semiconductor by a team of researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab).
More Graphene Current Events and Graphene News Articles

Graphene: Fundamentals and emergent applications

Graphene: Fundamentals and emergent applications
by Jamie H. Warner (Author), Franziska Schaffel (Author), Mark Rummeli (Author), Alicja Bachmatiuk (Author)

Providing fundamental knowledge necessary to understand graphene's atomic structure, band-structure, unique properties and an overview of groundbreaking current and emergent applications, this new handbook is essential reading for materials scientists, chemists and physicists. Since the 2010 physics Nobel Prize awarded to Geim and Novosolev for their groundbreaking work isolating graphene from bulk graphite, there has been a huge surge in interest in the area. This has led to a large number of news books on graphene. However, for such a vast inflow of new entrants, the current literature is surprisingly slight, focusing exclusively on current research or books on previous "hot topic" allotropes of carbon. This book covers fundamental groundwork of the structure, property,...

How To Make Your Fortune In The Graphene Revolution.

How To Make Your Fortune In The Graphene Revolution.

Investing in graphene is perhaps the most talked about prospect in the world of investment. With fantastic year-on-year growth projected, no other investment offers the small investor the chance to join an epoch changing industry that is expected to transform the commercial world over the next twenty years.

Whether you are looking for a penny stock to invest in or prefer to place your money in the safer hands of larger companies, you'll find some of the best share investments of the century inside. Graphene is almost guaranteed to be a world changing material, so why not let it change your financial situation too.

Having researched and followed the industry for several years and with a website dedicated to the subject you can be sure you'll be guided by one of...

The Millionaire Investor Better than gold, diamonds or real-estate: Graphene: How a new disruptive technology is changing the world, and we can become rich with it

The Millionaire Investor Better than gold, diamonds or real-estate: Graphene: How a new disruptive technology is changing the world, and we can become rich with it
by Dr. Elmar P. Selbach (Author)

NEW AND UPDATED CONTENT! New chapters, new companies added. Many pictures and up-to date content! Buy NOW! Who hasn’t heard about people who restlessly scan the market for stocks that perform extraordinarily? One of the companies that has skyrocketed in the past years is Microsoft. Whatever you’d invested in the 1980s – you became rich within 15 years. In this book, I want to show that a similar scenario is possible. One can become rich by investing in the right stocks. But, not by tricks, cheats or any other miraculous recipe. No. Just by observing the dramatic changes in an area of technology that is so far only known to insiders. We will see the dawn of a fascinating new era. The consequences of the changes ahead of us will change our world much more than any event before....

Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport

Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport
by Luis E. F. Foa Torres (Author), Stephan Roche (Author), Jean-Christophe Charlier (Author)

Beginning with an introduction to carbon-based nanomaterials, their electronic properties, and general concepts in quantum transport, this detailed primer describes the most effective theoretical and computational methods and tools for simulating the electronic structure and transport properties of graphene-based systems. Transport concepts are clearly presented through simple models, enabling comparison with analytical treatments, and multiscale quantum transport methodologies are introduced and developed in a straightforward way, demonstrating a range of methods for tackling the modelling of defects and impurities in more complex graphene-based materials. The authors also discuss the practical applications of this revolutionary nanomaterial, contemporary challenges in theory and...

Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World

Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World
by Mark Miodownik (Author)

A New York Times Bestseller

An eye-opening adventure deep inside the everyday materials that surround us, packed with surprising stories and fascinating science

Why is glass see-through? What makes elastic stretchy? Why does a paper clip bend? Why does any material look and behave the way it does? These are the sorts of questions that Mark Miodownik is constantly asking himself. A globally-renowned materials scientist, Miodownik has spent his life exploring objects as ordinary as an envelope and as unexpected as concrete cloth, uncovering the fascinating secrets that hold together our physical world.

In Stuff Matters, Miodownik entertainingly examines the materials he encounters in a typical morning, from the steel in his razor and the graphite in his pencil to the...

Graphene: A New Paradigm in Condensed Matter and Device Physics

Graphene: A New Paradigm in Condensed Matter and Device Physics
by E. L. Wolf (Author)

The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law.

The book describes the unusual physics of the material, that it offers linear rather than parabolic energy bands. The Dirac-like electron energy bands lead to high constant carrier speed, similar to light photons. The...

Graphene: Synthesis, Properties, and Phenomena

Graphene: Synthesis, Properties, and Phenomena
by C. N. R. Rao (Editor), Ajay K. Sood (Editor)

Since its discovery in 2004, graphene has been a great sensation due to its unique structure and unusual properties, and it has only taken 6 years for a Noble Prize to be awarded for the field of graphene research. This monograph gives a well-balanced overview on all areas of scientific interest surrounding this fascinating nanocarbon. In one handy volume it offers comprehensive coverage of the topic, including chemical, materials science, nanoscience, physics, engineering, life science, and potential applications. Other graphene-like, inorganic layered materials are also discussed. Edited by two highly honored scientists, this is an invaluable companion for inorganic, organic, and physical chemists, materials scientists, and physicists. From the Contents: * Synthesis,...

Graphene: Carbon in Two Dimensions

Graphene: Carbon in Two Dimensions
by Mikhail I. Katsnelson (Author)

Graphene is the thinnest known material, a sheet of carbon atoms arranged in hexagonal cells a single atom thick, and yet stronger than diamond. It has potentially significant applications in nanotechnology, 'beyond-silicon' electronics, solid-state realization of high-energy phenomena and as a prototype membrane which could revolutionise soft matter and 2D physics. In this book, leading graphene research theorist Mikhail Katsnelson presents the basic concepts of graphene physics. Topics covered include Berry phase, topologically protected zero modes, Klein tunneling, vacuum reconstruction near supercritical charges, and deformation-induced gauge fields. The book also introduces the theory of flexible membranes relevant to graphene physics and discusses electronic transport, optical...

The Graphene Handbook

The Graphene Handbook
by Ron Mertens (Author)

The Graphene Handbook is a comprehensive guide to graphene technology, industry and market - brought to you by Graphene-Info.

Functionalization of Graphene

Functionalization of Graphene
by Vasilios Georgakilas (Editor)

All set to become the standard reference on the topic, this book covers the most important procedures for chemical functionalization, making it an indispensable resource for all chemists, physicists, materials scientists and engineers entering or already working in the field. Expert authors share their knowledge on a wide range of different functional groups, including organic functional groups, hydrogen, halogen, nanoparticles and polymers.

© 2015