Science Current Events | Science News | Brightsurf.com
 

Handful of heavyweight trees per acre are forest champs

May 03, 2012
Big trees three or more feet in diameter accounted for nearly half the biomass measured at a Yosemite National Park site, yet represented only one percent of the trees growing there.

This means just a few towering white fir, sugar pine and incense cedars per acre at the Yosemite site are disproportionately responsible for photosynthesis, converting carbon dioxide into plant tissue and sequestering that carbon in the forest, sometimes for centuries, according to James Lutz, a University of Washington research scientist in environmental and forest sciences. He's lead author of a paper on the largest quantitative study yet of the importance of big trees in temperate forests being published online May 2 on PLoS ONE.

"In a forest comprised of younger trees that are generally the same age, if you lose one percent of the trees, you lose one percent of the biomass," he said. "In a forest with large trees like the one we studied, if you lose one percent of the trees, you could lose half the biomass."

In 2009, scientists including Lutz reported that the density of large-diameter trees declined nearly 25 percent between the 1930s and 1990s in Yosemite National Park, even though the area was never logged. Scientists including co-author Andrew Larson of the University of Montana, also have found notable numbers of large trees dying in similar areas across the West.

Because of this, scientists have been keen to study a plot large enough to detect forest ecosystem changes involving large trees, including the effects of climate variability and change, possible culprits in the declines, Lutz said.

The new 63-acre study site in the western part of Yosemite National Park is one of the largest, fully-mapped plots in the world and the largest old-growth plot in North America. The tally of what's there, including the counting and tagging of 34,500 live trees, was done by citizen scientists, mainly undergraduate college students, led by Lutz, Larson, Mark Swanson of Washington State University and James Freund of the UW.

Included was all above-ground biomass such as live trees, snags, downed woody debris, litter and what's called duff, the decaying plant matter on the ground under trees. Even when big trees die, they continue to dominate biomass in different ways. For example, 12 percent of standing snags were the remains of large-diameter trees, but still accounted for 60 percent of the total biomass of snags.

Live and dead biomass totaled 280 tons per acre (652 metric tons per hectare), a figure unmatched by any other forest in the Smithsonian Center for Tropical Forest Science network, a global network of 42 tropical and temperate forest plots including the one in Yosemite.

Trees in the western U.S. with trunks more than three feet across are typically at least 200 years old. Many forests that were heavily harvested in the 19th and 20th centuries, or those that are used as commercial forest lands today, don't generally have large-diameter trees, snags or large wood on the ground.

One implication of the research is that land managers may want to pay more attention to existing big trees, the co-authors said. Last year in the Yosemite National Park, for example, managers planning to set fires to clear out overgrown brush and densely packed small trees first used data from the study plot to figure out how many large trees to protect.

"Before the fires were started, crews raked around some of the large trees so debris wouldn't just sit and burn at the base of the tree and kill the cambium, the tissue under the bark that sustains trees," Lutz said.

In some younger forests that lack big trees, citizens and land managers might want to consider fostering the growth of a few big-trunked trees, Lutz said.

Another finding from the new work is that forest models based either on scaling theory or competition theory, which are useful for younger, more uniform forests, fail to capture how and where large trees occur in forests.

"These trees started growing in the Little Ice Age," Lutz said. "Current models can't fully capture the hundreds of years of dynamic processes that have shaped them during their lifetimes."

University of Washington


Related Biomass Current Events and Biomass News Articles


Malaysia's 'Smart Villages' and 9 other proven ideas for sustainable development
As nations zero in on the UN's post-2015 global Sustainable Development Goals, innovations being successfully pioneered and demonstrated in Malaysia offer several proven tactical ideas for improving the world, says an influential international sustainable development networking organization.

Saltmarsh recovery looks good, falls short
In some places Cape Cod's imperiled saltmarsh grasses have been making a comeback, but a new study reports that their ability to protect the coast has not returned nearly as fast as their healthy appearance would suggest.

Small algae with great potential
The single most important calcifying algae of the world's oceans is able to simultaneously adapt to rising water temperatures and ocean acidification through evolution.

Study puts some mussels into Bay restoration
Restoring oysters-and their ability to filter large volumes of water-is widely seen as a key way to improve the health of Chesapeake Bay.

Shift in Arabian Sea Plankton May Threaten Fisheries
A growing "dead zone" in the middle of the Arabian Sea has allowed plankton uniquely suited to low- oxygen water to take over the base of the food chain. Their rise to dominance over the last decade could be disastrous for the predator fish that sustain 120 million people living on the sea's edge.

Changing global diets is vital to reducing climate change
A new study, published today in Nature Climate Change, suggests that - if current trends continue - food production alone will reach, if not exceed, the global targets for total greenhouse gas (GHG) emissions in 2050.

Bionic Liquids from Lignin
While the powerful solvents known as ionic liquids show great promise for liberating fermentable sugars from lignocellulose and improving the economics of advanced biofuels, an even more promising candidate is on the horizon - bionic liquids.

Study shows Asian carp could establish in Lake Erie with little effect to fishery
According to a study published in the journal Conservation Biology by a group of scientists from the University of Notre Dame, Resources for the Future, U.S. Forest Service, University of Michigan and the NOAA Great Lakes Environmental Laboratory, if bighead and silver carp were to establish in Lake Erie, local fish biomass is not likely to change beyond observations recorded in the last 3 decades.

NOAA, EPA-supported scientists find average but large Gulf dead zone
NOAA- and EPA-supported scientists have mapped the Gulf of Mexico dead zone, an area with low oxygen water, measuring 5,052 square miles this summer--approximately the size of the state of Connecticut.

Enhancing Biofuel Yields from Biomass with Novel New Method
A team of researchers, led by Professor Charles E. Wyman, at the University of California, Riverside's Bourns College of Engineering have developed a versatile, relatively non-toxic, and efficient way to convert raw agricultural and forestry residues and other plant matter, known as lignocellulosic biomass, into biofuels and chemicals.
More Biomass Current Events and Biomass News Articles

The Biomass Revolution

The Biomass Revolution


What would you do if you lived in a world where your every move was scrutinized by your own personal artificial intelligence--a world where everything is regulated, from power usage to relationships--a world where everything you thought you knew turned out to be a lie?

Welcome to Tisaia - The last hub of modern civilization in a world left scorched by the nuclear fires of the Biomass Wars. Surrounded by a fortress of steel walls and protected by a fierce and loyal Council of Royal Knights, Tisaia seems relatively safe to the average State worker and citizen. A plentiful supply of Biomass powers the cities and food is abundant, but security has come at a terrible cost. The State will do anything to protect its resources, even if it means suppressing the rights of its citizens...

Biomass Gasification, Pyrolysis and Torrefaction, Second Edition: Practical Design and Theory

Biomass Gasification, Pyrolysis and Torrefaction, Second Edition: Practical Design and Theory
by Prabir Basu (Author)


Biomass is the most widely used non-fossil fuel in the world. Biomass resources show a considerable potential in the long-term given the increasing proliferation of dedicated energy crops for biofuels. The second edition of Biomass Gasification and Pyrolysis is enhanced with new topics, such as torrefaction and cofiring, making it a versatile resource that not only explains the basic principles of energy conversion systems, but also provides valuable insight into the design of biomass conversion systems. This book will allow professionals, such as engineers, scientists, and operating personnel of biomass gasification, pyrolysis or torrefaction plants, to gain a better comprehension of the basics of biomass conversion. The author provides many worked out design problems, step-by-step...

Biomass to Renewable Energy Processes

Biomass to Renewable Energy Processes
by Jay Cheng (Editor)


Continuously increased consumption of fossil fuels, decreased availability of easily accessible fossil fuels, significant contributions to climate change and wildly fluctuating fuels prices have combine to challenge the reliability and sustainability of our current energy supply. A possible solution to this energy challenge, biomass energy production, heavily dependent on sugarcane and corn production, is vulnerable to the fluctuation of the feedstock price. New technologies need to be developed to convert abundant biomass such as lignocellulosic materials into energy products in a cost-effective and environmentally friendly manner. An introduction to fundamental principles and practical applications, Biomass to Renewable Energy Processes explains the theories of biological processes,...

Biomass Processing Technologies

Biomass Processing Technologies
by Vladimir Strezov (Editor), Tim J. Evans (Editor)


This book is a thoroughly up-to-date treatment of all the available technologies for biomass conversion. Each chapter looks at the viability and implementation of each technology with examples of existing equipment and plants. In addition, the text addresses the economics of biomass processing. The book could also be used as a supplementary text for senior undergraduate courses on biomass processing.

Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power

Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power
by Robert C. Brown (Editor), Christian Stevens (Editor)


Thermochemical pathways for biomass conversion offer opportunities for rapid and efficient processing of diverse feedstocks into fuels, chemicals and power. Thermochemical processing has several advantages relative to biochemical processing, including greater feedstock flexibility, conversion of both carbohydrate and lignin into products, faster reaction rates, and the ability to produce a diverse selection of fuels.Thermochemical Processing of Biomass examines the large number of possible pathways for converting biomass into fuels, chemicals and power through the use of heat and catalysts. The book presents a practical overview of the latest research in this rapidly developing field, highlighting the fundamental chemistry, technical applications and operating costs associated with...

Transformation of Biomass: Theory to Practice

Transformation of Biomass: Theory to Practice
by Andreas Hornung (Author)


Biomass is a key resource for meeting the energy and material demands of mankind in the future. As a result, businesses and technologies are developing around biomass processing and its applications.Transformation of Biomass: Theory to Practice explores the modern applications of biomass and bio-based residues for the generation of energy, heat and chemical products. The first chapter presents readers with a broad overview of biomass and its composition, conversion routes and products. The following chapters deal with specific technologies, including anaerobic digestion, pyrolysis and gasification, as well as hydrothermal and supercritical conversion. Each chapter details current practises, recent developments, business case models and comprehensive analysis of the problems associated...

The Handbook of Biomass Combustion and Co-firing

The Handbook of Biomass Combustion and Co-firing
by Sjaak van Loo (Editor), Jaap Koppejan (Editor)


This unique handbook presents both the theory and application of biomass combustion and co-firing, from basic principles to industrial combustion and environmental impact, in a clear and comprehensive manner. It offers a solid grounding on biomass combustion, and advice on improving combustion systems. Written by leading international academics and industrial experts, and prepared under the auspices of the IEA Bioenergy Implementing Agreement, the handbook is an essential resource for anyone interested in biomass combustion and co-firing technologies varying from domestic woodstoves to utility-scale power generation. The book covers subjects including biomass fuel pre-treatment and logistics, modelling the combustion process and ash-related issues, as well as featuring an overview of the...

Introduction to Biomass Energy Conversions

Introduction to Biomass Energy Conversions
by Sergio Capareda (Author)


The potential that biomass energy has to supplement traditional fuels and reduce greenhouse gas emissions has put it front and center in the plan to replace fossil-based fuels with renewable fuels. While much has been written about biomass conversions, no single textbook contains all the information needed to teach a biomass conversion course—until now. Introduction to Biomass Energy Conversions presents a comprehensive review of biomass resources available for conversion into heat, power, and biofuels. The textbook covers biomass characterization and discusses facilities, equipment, and standards (e.g. ASTM or NREL) used for analysis. It examines the range of biomass resources available for conversion and presents traditional biomass conversion processes along with extensive biomass...

The Homeowner's Guide to Renewable Energy: Achieving Energy Independence Through Solar, Wind, Biomass, and Hydropower

The Homeowner's Guide to Renewable Energy: Achieving Energy Independence Through Solar, Wind, Biomass, and Hydropower
by Dan Chiras (Author)


Energy bills have skyrocketed in the United States, and traditional energy sources can be as damaging to the environment as they are to your pocketbook. The Homeowner's Guide to Renewable Energy will show you how to slash your home energy costs while dramatically reducing your carbon footprint.Completely revised and updated, this new edition describes the most practical and affordable methods for making significant improvements in home energy efficiency and tapping into clean, affordable, renewable energy resources. If implemented, these measures will save the average homeowner tens of thousands of dollars over the coming decades.Focusing on the latest technological advances in residential renewable energy, this guide examines each alternative energy option available including:Solar hot...

Fast Pyrolysis of Biomass: A Handbook Volume 2 (v. 2)

Fast Pyrolysis of Biomass: A Handbook Volume 2 (v. 2)
by A V Bridgwater (Editor)


The Fast Pyrolysis Handbook Volume 2 is an edited version of the final report of the European Commission and IEA Bioenergy sponsored Pyrolysis Network that officially finished in 2001. It provides a companion volume to the first handbook published in 1999 and it is again intended that this will provide a useful guide both to newcomers to the subject area as well as those already involved in research, development and implementation. A significant feature of this second volume is the greater attention paid to addressing commercial issues such as marketability, transportation and safety. Fast pyrolysis is a high temperature process in which biomass is rapidly heated in the absence of oxygen. As a result it decomposes to generate mostly vapours and aerosols and some charcoal. After cooling...

© 2014 BrightSurf.com