Science Current Events | Science News | Brightsurf.com
 

Handful of heavyweight trees per acre are forest champs

May 03, 2012
Big trees three or more feet in diameter accounted for nearly half the biomass measured at a Yosemite National Park site, yet represented only one percent of the trees growing there.

This means just a few towering white fir, sugar pine and incense cedars per acre at the Yosemite site are disproportionately responsible for photosynthesis, converting carbon dioxide into plant tissue and sequestering that carbon in the forest, sometimes for centuries, according to James Lutz, a University of Washington research scientist in environmental and forest sciences. He's lead author of a paper on the largest quantitative study yet of the importance of big trees in temperate forests being published online May 2 on PLoS ONE.

"In a forest comprised of younger trees that are generally the same age, if you lose one percent of the trees, you lose one percent of the biomass," he said. "In a forest with large trees like the one we studied, if you lose one percent of the trees, you could lose half the biomass."

In 2009, scientists including Lutz reported that the density of large-diameter trees declined nearly 25 percent between the 1930s and 1990s in Yosemite National Park, even though the area was never logged. Scientists including co-author Andrew Larson of the University of Montana, also have found notable numbers of large trees dying in similar areas across the West.

Because of this, scientists have been keen to study a plot large enough to detect forest ecosystem changes involving large trees, including the effects of climate variability and change, possible culprits in the declines, Lutz said.

The new 63-acre study site in the western part of Yosemite National Park is one of the largest, fully-mapped plots in the world and the largest old-growth plot in North America. The tally of what's there, including the counting and tagging of 34,500 live trees, was done by citizen scientists, mainly undergraduate college students, led by Lutz, Larson, Mark Swanson of Washington State University and James Freund of the UW.

Included was all above-ground biomass such as live trees, snags, downed woody debris, litter and what's called duff, the decaying plant matter on the ground under trees. Even when big trees die, they continue to dominate biomass in different ways. For example, 12 percent of standing snags were the remains of large-diameter trees, but still accounted for 60 percent of the total biomass of snags.

Live and dead biomass totaled 280 tons per acre (652 metric tons per hectare), a figure unmatched by any other forest in the Smithsonian Center for Tropical Forest Science network, a global network of 42 tropical and temperate forest plots including the one in Yosemite.

Trees in the western U.S. with trunks more than three feet across are typically at least 200 years old. Many forests that were heavily harvested in the 19th and 20th centuries, or those that are used as commercial forest lands today, don't generally have large-diameter trees, snags or large wood on the ground.

One implication of the research is that land managers may want to pay more attention to existing big trees, the co-authors said. Last year in the Yosemite National Park, for example, managers planning to set fires to clear out overgrown brush and densely packed small trees first used data from the study plot to figure out how many large trees to protect.

"Before the fires were started, crews raked around some of the large trees so debris wouldn't just sit and burn at the base of the tree and kill the cambium, the tissue under the bark that sustains trees," Lutz said.

In some younger forests that lack big trees, citizens and land managers might want to consider fostering the growth of a few big-trunked trees, Lutz said.

Another finding from the new work is that forest models based either on scaling theory or competition theory, which are useful for younger, more uniform forests, fail to capture how and where large trees occur in forests.

"These trees started growing in the Little Ice Age," Lutz said. "Current models can't fully capture the hundreds of years of dynamic processes that have shaped them during their lifetimes."

University of Washington


Related Biomass Current Events and Biomass News Articles


Neither more food nor better food -- still, fish biomass increases
To increase the biomass of fish, contemporary ecological theory predicts that either the amount of food or the quality of the food has to increase.

West Coast waters shifting to lower-productivity regime, new NOAA report finds
Large-scale climate patterns that affect the Pacific Ocean indicate that waters off the West Coast have shifted toward warmer, less productive conditions that may affect marine species from seabirds to salmon, according to the 2015 State of the California Current Report delivered to the Pacific Fishery Management Council.

Unique proteins found in heat-loving organisms attach to plant matter
Unique proteins newly discovered in heat-loving bacteria are more than capable of attaching themselves to plant cellulose, possibly paving the way for more efficient methods of converting plant matter into biofuels.

Researchers develop new approach that combines biomass conversion, solar energy conversion
In a study published March 9 in Nature Chemistry, University of Wisconsin-Madison chemistry Professor Kyoung-Shin Choi presents a new approach to combine solar energy conversion and biomass conversion, two important research areas for renewable energy.

New information helps predict future climate change impacts on global tropics
Researchers at the University of Montana, Princeton University, Stanford University and Rutgers University, among others, are collecting new measurements of tropical forests to gain a better understanding of how they respond to seasonal climate variations.

Biofuel proteomics
If advanced biofuels are to replace gasoline, diesel and jet fuel on a gallon-for-gallon basis at competitive pricing, we're going to need a new generation of fuel crops - plants designed specifically to serve as feedstocks for fuels.

Africa, from a CATS point of view
From Saharan dust storms to icy clouds to smoke on the opposite side of the continent, the first image from NASA's newest cloud- and aerosol-measuring instrument provides a profile of the atmosphere above Africa.

New models yield clearer picture of emissions' true costs
When its environmental and human health toll is factored in, a gallon of gasoline costs us about $3.80 more than the pump price, a new Duke University study finds.

Metabolic path to improved biofuel production
Researchers with the Energy Biosciences Institute (EBI), a partnership that includes the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, have found a way to increase the production of fuels and other chemicals from biomass fermented by yeast.

Miscanthus-based ethanol boasts bigger environmental benefits, higher profits
A recent study simulated a side-by-side comparison of the yields and costs of producing ethanol using miscanthus, switchgrass, and corn stover.
More Biomass Current Events and Biomass News Articles

The Biomass Revolution (The Tisaian Chronicles Book 1)

The Biomass Revolution (The Tisaian Chronicles Book 1)


What would you do if you lived in a world where your every move was scrutinized by your own personal artificial intelligence--a world where everything is regulated, from power usage to relationships--a world where everything you thought you knew turned out to be a lie?

Welcome to Tisaia - The last hub of modern civilization in a world left scorched by the nuclear fires of the Biomass Wars. Surrounded by a fortress of steel walls and protected by a fierce and loyal Council of Royal Knights, Tisaia seems relatively safe to the average State worker and citizen. A plentiful supply of Biomass powers the cities and food is abundant, but security has come at a terrible cost. The State will do anything to protect its resources, even if it means suppressing the rights of its citizens...

Biomass to Renewable Energy Processes

Biomass to Renewable Energy Processes
by Jay Cheng (Editor)


Continuously increased consumption of fossil fuels, decreased availability of easily accessible fossil fuels, significant contributions to climate change and wildly fluctuating fuels prices have combine to challenge the reliability and sustainability of our current energy supply. A possible solution to this energy challenge, biomass energy production, heavily dependent on sugarcane and corn production, is vulnerable to the fluctuation of the feedstock price. New technologies need to be developed to convert abundant biomass such as lignocellulosic materials into energy products in a cost-effective and environmentally friendly manner. An introduction to fundamental principles and practical applications, Biomass to Renewable Energy Processes explains the theories of biological processes,...

Biomass Gasification, Pyrolysis and Torrefaction, Second Edition: Practical Design and Theory

Biomass Gasification, Pyrolysis and Torrefaction, Second Edition: Practical Design and Theory
by Prabir Basu (Author)


Biomass is the most widely used non-fossil fuel in the world. Biomass resources show a considerable potential in the long-term given the increasing proliferation of dedicated energy crops for biofuels. The second edition of Biomass Gasification and Pyrolysis is enhanced with new topics, such as torrefaction and cofiring, making it a versatile resource that not only explains the basic principles of energy conversion systems, but also provides valuable insight into the design of biomass conversion systems. This book will allow professionals, such as engineers, scientists, and operating personnel of biomass gasification, pyrolysis or torrefaction plants, to gain a better comprehension of the basics of biomass conversion. The author provides many worked out design problems, step-by-step...

Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power

Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power
by Robert C. Brown (Editor), Christian Stevens (Editor)


This book is a comprehensive examination of the large number of possible pathways for converting biomass into fuels and power through thermochemical processes. The book brings together a widely scattered body of information into a single volume that allows comparison of the various thermochemical pathways. The thermochemical processes considered include combustion, gasification, fast pyrolysis, hydrothermal treating, and catalytic conversion of sugars. The book also includes chapters on the upgrading of syngas and bio-oil to liquid transportation fuels, and the economics of the various processes for producing fuels and power.

Biomass Processing Technologies

Biomass Processing Technologies
by Vladimir Strezov (Editor), Tim J. Evans (Editor)




The Homeowner's Guide to Renewable Energy: Achieving Energy Independence Through Solar, Wind, Biomass, and Hydropower

The Homeowner's Guide to Renewable Energy: Achieving Energy Independence Through Solar, Wind, Biomass, and Hydropower
by Dan Chiras (Author)


Energy bills have skyrocketed in the United States, and traditional energy sources can be as damaging to the environment as they are to your pocketbook. The Homeowner's Guide to Renewable Energy will show you how to slash your home energy costs while dramatically reducing your carbon footprint.Completely revised and updated, this new edition describes the most practical and affordable methods for making significant improvements in home energy efficiency and tapping into clean, affordable, renewable energy resources. If implemented, these measures will save the average homeowner tens of thousands of dollars over the coming decades.Focusing on the latest technological advances in residential renewable energy, this guide examines each alternative energy option available including:Solar hot...

Introduction to Chemicals from Biomass (Wiley Series in Renewable Resource)

Introduction to Chemicals from Biomass (Wiley Series in Renewable Resource)
by James H. Clark (Editor), Fabien Deswarte (Editor)


Introduction to Chemicals from Biomass, Second Edition presents an overview of the use of biorenewable resources in the 21st century for the manufacture of chemical products, materials and energy. The book demonstrates that biomass is essentially a rich mixture of chemicals and materials and, as such, has a tremendous potential as feedstock for making a wide range of chemicals and materials with applications in industries from pharmaceuticals to furniture. Completely revised and updated to reflect recent developments, this new edition begins with an introduction to the biorefinery concept, followed by chapters addressing the various types of available biomass feedstocks, including waste, and the different pre-treatment and processing technologies being developed to turn these feedstocks...

Biomass Power (Let's Discuss Energy Resources)

Biomass Power (Let's Discuss Energy Resources)
by Richard Spilsbury (Author), Louise Spilsbury (Author)


With supplies of non-renewable energy sources running low and the threat of global warming and climate change, there is an urgent need to look at other types of energy resources and how well they can meet our power needs. While new technologies are being developed, each energy resource comes at a cost. This series looks at each energy resource, the technology and cost of how it is used to meet power needs and how it impacts the environment and humans. Each book explains how that power is generated and where it is used, and then, using specific Let's Discuss panels, explores the various advantages and disadvantages that concern it's use as an alternative fuel source. Case studies examine specific usage examples where that source has either worked or not worked so that the reader can weigh...

Biomass: Fueling Change (Energy Revolution)

Biomass: Fueling Change (Energy Revolution)
by Niki Walker (Author)


FOR USE IN SCHOOLS AND LIBRARIES ONLY. This book examines the world's energy challenge, focusing on the concept of biopower and using several types of biomass as a renewable energy source to replace our dependence on fossil fuel.

Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes

Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes
by Wiebren de Jong (Author), J. Ruud van Ommen (Author)


Focusing on the conversion of biomass into gas or liquid fuels the book covers physical pre-treatment technologies, thermal, chemical and biochemical conversion technologies
• Details the latest biomass characterization techniques
• Explains the biochemical and thermochemical conversion processes
• Discusses the development of integrated biorefineries, which are similar to petroleum refineries in concept, covering such topics as reactor configurations and downstream processing
• Describes how to mitigate the environmental risks when using biomass as fuel
• Includes many problems, small projects, sample calculations and industrial application examples

© 2015 BrightSurf.com