Science Current Events | Science News |

Handful of heavyweight trees per acre are forest champs

May 03, 2012

Big trees three or more feet in diameter accounted for nearly half the biomass measured at a Yosemite National Park site, yet represented only one percent of the trees growing there.

This means just a few towering white fir, sugar pine and incense cedars per acre at the Yosemite site are disproportionately responsible for photosynthesis, converting carbon dioxide into plant tissue and sequestering that carbon in the forest, sometimes for centuries, according to James Lutz, a University of Washington research scientist in environmental and forest sciences. He's lead author of a paper on the largest quantitative study yet of the importance of big trees in temperate forests being published online May 2 on PLoS ONE.

"In a forest comprised of younger trees that are generally the same age, if you lose one percent of the trees, you lose one percent of the biomass," he said. "In a forest with large trees like the one we studied, if you lose one percent of the trees, you could lose half the biomass."

In 2009, scientists including Lutz reported that the density of large-diameter trees declined nearly 25 percent between the 1930s and 1990s in Yosemite National Park, even though the area was never logged. Scientists including co-author Andrew Larson of the University of Montana, also have found notable numbers of large trees dying in similar areas across the West.

Because of this, scientists have been keen to study a plot large enough to detect forest ecosystem changes involving large trees, including the effects of climate variability and change, possible culprits in the declines, Lutz said.

The new 63-acre study site in the western part of Yosemite National Park is one of the largest, fully-mapped plots in the world and the largest old-growth plot in North America. The tally of what's there, including the counting and tagging of 34,500 live trees, was done by citizen scientists, mainly undergraduate college students, led by Lutz, Larson, Mark Swanson of Washington State University and James Freund of the UW.

Included was all above-ground biomass such as live trees, snags, downed woody debris, litter and what's called duff, the decaying plant matter on the ground under trees. Even when big trees die, they continue to dominate biomass in different ways. For example, 12 percent of standing snags were the remains of large-diameter trees, but still accounted for 60 percent of the total biomass of snags.

Live and dead biomass totaled 280 tons per acre (652 metric tons per hectare), a figure unmatched by any other forest in the Smithsonian Center for Tropical Forest Science network, a global network of 42 tropical and temperate forest plots including the one in Yosemite.

Trees in the western U.S. with trunks more than three feet across are typically at least 200 years old. Many forests that were heavily harvested in the 19th and 20th centuries, or those that are used as commercial forest lands today, don't generally have large-diameter trees, snags or large wood on the ground.

One implication of the research is that land managers may want to pay more attention to existing big trees, the co-authors said. Last year in the Yosemite National Park, for example, managers planning to set fires to clear out overgrown brush and densely packed small trees first used data from the study plot to figure out how many large trees to protect.

"Before the fires were started, crews raked around some of the large trees so debris wouldn't just sit and burn at the base of the tree and kill the cambium, the tissue under the bark that sustains trees," Lutz said.

In some younger forests that lack big trees, citizens and land managers might want to consider fostering the growth of a few big-trunked trees, Lutz said.

Another finding from the new work is that forest models based either on scaling theory or competition theory, which are useful for younger, more uniform forests, fail to capture how and where large trees occur in forests.

"These trees started growing in the Little Ice Age," Lutz said. "Current models can't fully capture the hundreds of years of dynamic processes that have shaped them during their lifetimes."

University of Washington

Related Biomass Current Events and Biomass News Articles

Don't forget plankton in climate change models, says study
A new study from the University of Exeter, published in the journal Ecology Letters, found that phytoplankton - microscopic water-borne plants - can rapidly evolve tolerance to elevated water temperatures.

Sea traffic pollutes our lungs more than previously thought
New data presented by researchers at Lund University and others in the journal Oceanologia show that the air along the coasts is full of hazardous nanoparticles from sea traffic.

Energy-efficient reaction drives ORNL biofuel conversion technology
A new study from the Department of Energy's Oak Ridge National Laboratory explains the mechanism behind a technology that converts bio-based ethanol into hydrocarbon blend-stocks for use as fossil fuel alternatives.

Life cycle assessment approach combines environmental with economic factors to determine greenhouse gas reductions for varying forms of bioenergy
A study published in the journal Biomass & Bioenergy sets out to calculate the true costs and benefits associated with replacing fossil fuels with bioenergy in varying forms for numerous s applications.

Wood instead of petroleum: Producing chemical substances solely from renewable resources
Petroleum might well be replaced by wood soon when it comes to manufacturing chemical substances.

Ancient permafrost quickly transforms to carbon dioxide upon thaw
Researchers from the U.S. Geological Survey and key academic partners including the University of Colorado Boulder have quantified how rapidly ancient permafrost decomposes upon thawing and how much carbon dioxide is produced in the process.

Scientists urge policymakers to plant more trees to save Britain's rivers from climate change
New research has prompted scientists to call on policymakers to plant more trees alongside upland rivers and streams, in an effort to save their habitats from the future harm of climate change.

Nano power grids between bacteria
Electrical energy from the socket - this convenient type of power supply is apparently used by some microorganisms.

Climbing plants disturb carbon storage in tropical forests
Scientists have discovered that climbing vines are upsetting the carbon balance of tropical forests by crowding out and killing trees.

More extreme weather projected in the Amazon could have global climate consequences
A new paper co-authored by WHRC scientists Philip Duffy and Paulo Brando evaluates the accuracy of current climate models and uses them to project future drought and wet periods in the Amazon.
More Biomass Current Events and Biomass News Articles

Biomass to Renewable Energy Processes

Biomass to Renewable Energy Processes
by Jay Cheng (Editor)

Continuously increased consumption of fossil fuels, decreased availability of easily accessible fossil fuels, significant contributions to climate change and wildly fluctuating fuels prices have combine to challenge the reliability and sustainability of our current energy supply. A possible solution to this energy challenge, biomass energy production, heavily dependent on sugarcane and corn production, is vulnerable to the fluctuation of the feedstock price. New technologies need to be developed to convert abundant biomass such as lignocellulosic materials into energy products in a cost-effective and environmentally friendly manner. An introduction to fundamental principles and practical applications, Biomass to Renewable Energy Processes explains the theories of biological processes,...

The Biomass Revolution (The Tisaian Chronicles Book 1)

The Biomass Revolution (The Tisaian Chronicles Book 1)

What would you do if you lived in a world where your every move was scrutinized by your own personal artificial intelligence--a world where everything is regulated, from power usage to relationships--a world where everything you thought you knew turned out to be a lie?

Welcome to Tisaia - The last hub of modern civilization in a world left scorched by the nuclear fires of the Biomass Wars. Surrounded by a fortress of steel walls and protected by a fierce and loyal Council of Royal Knights, Tisaia seems relatively safe to the average State worker and citizen. A plentiful supply of Biomass powers the cities and food is abundant, but security has come at a terrible cost. The State will do anything to protect its resources, even if it means suppressing the rights of its...

Bioenergy: Biomass to Biofuels

Bioenergy: Biomass to Biofuels
by Anju Dahiya (Editor)

Depleting fossil fuel reserves and adverse effects of fluctuating oil prices have renewed interest in alternative and sustainable sources of energy. Bioenergy: Biomass to Biofuels takes on this topic and examines current and emerging feedstocks and advanced processes and technologies enabling the development of all possible alternative energy sources: solid (wood energy, grass energy, and other biomass), liquid (biodiesel, algae biofuel, ethanol), and gaseous/electric (biogas, syngas, bioelectricity). Divided into seven parts, Bioenergy gives thorough consideration to topics such as feedstocks, biomass production and utilization, life cycle analysis, Energy Return on Invested (EROI), integrated sustainability assessments, conversions technologies, biofuels economics and policy. In...

Biomass Gasification, Pyrolysis and Torrefaction, Second Edition: Practical Design and Theory

Biomass Gasification, Pyrolysis and Torrefaction, Second Edition: Practical Design and Theory
by Prabir Basu (Author)

Biomass is the most widely used non-fossil fuel in the world. Biomass resources show a considerable potential in the long-term given the increasing proliferation of dedicated energy crops for biofuels. The second edition of Biomass Gasification and Pyrolysis is enhanced with new topics, such as torrefaction and cofiring, making it a versatile resource that not only explains the basic principles of energy conversion systems, but also provides valuable insight into the design of biomass conversion systems. This book will allow professionals, such as engineers, scientists, and operating personnel of biomass gasification, pyrolysis or torrefaction plants, to gain a better comprehension of the basics of biomass conversion. The author provides many worked out design problems, step-by-step...

Technologies for Converting Biomass to Useful Energy: Combustion, Gasification, Pyrolysis, Torrefaction and Fermentation (Sustainable Energy Developments)

Technologies for Converting Biomass to Useful Energy: Combustion, Gasification, Pyrolysis, Torrefaction and Fermentation (Sustainable Energy Developments)
by Erik Dahlquist (Editor)

Officially, the use of biomass for energy meets only 10-13% of the total global energy demand of 140 000 TWh per year. Still, thirty years ago the official figure was zero, as only traded biomass was included. While the actual production of biomass is in the range of 270 000 TWh per year, most of this is not used for energy purposes, and mostly it is not used very efficiently. Therefore, there is a need for new methods for converting biomass into refined products like chemicals, fuels, wood and paper products, heat, cooling and electric power. Obviously, some biomass is also used as food – our primary life necessity. The different types of conversion methods covered in this volume are biogas production, bio-ethanol production, torrefaction, pyrolysis, high temperature gasifi cation and...

Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power

Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power
by Robert C. Brown (Editor), Christian Stevens (Editor)

Thermochemical pathways for biomass conversion offer opportunities for rapid and efficient processing of diverse feedstocks into fuels, chemicals and power. Thermochemical processing has several advantages relative to biochemical processing, including greater feedstock flexibility, conversion of both carbohydrate and lignin into products, faster reaction rates, and the ability to produce a diverse selection of fuels. Thermochemical Processing of Biomass examines the large number of possible pathways for converting biomass into fuels, chemicals and power through the use of heat and catalysts. The book presents a practical overview of the latest research in this rapidly developing field, highlighting the fundamental chemistry, technical applications and operating costs associated with...

Efficiency of Biomass Energy: An Exergy Approach to Biofuels, Power, and Biorefineries

Efficiency of Biomass Energy: An Exergy Approach to Biofuels, Power, and Biorefineries
by Krzysztof J. Ptasinski (Author)

Details energy and exergy efficiencies of all major aspects of bioenergy systems Covers all major bioenergy processes starting from photosynthesis and cultivation of biomass feedstocks and ending with final bioenergy products, like power, biofuels, and chemicals Each chapter includes historical developments, chemistry, major technologies, applications as well as energy, environmental and economic aspects in order to serve as an introduction to biomass and bioenergy A separate chapter introduces a beginner in easy accessible way to exergy analysis and the similarities and differences between energy and exergy efficiencies are underlined Includes case studies and illustrative examples of 1st, 2nd, and 3rd generation biofuels production, power and heat generation (thermal plants, fuel...

Biomass: Fueling Change (Energy Revolution)

Biomass: Fueling Change (Energy Revolution)
by Niki Walker (Author)

FOR USE IN SCHOOLS AND LIBRARIES ONLY. Examines the world's energy challenge, focusing on the concept of biopower and using several types of biomass as a renewable energy source to replace our dependence on fossil fuel.

Biomass and Biofuels: Advanced Biorefineries for Sustainable Production and Distribution

Biomass and Biofuels: Advanced Biorefineries for Sustainable Production and Distribution
by Shibu Jose (Editor), Thallada Bhaskar (Editor)

The long-held tenets of the energy sector are being rewritten in the twenty-first century. The rise of unconventional oil and gas and of renewables is transforming our economies and improving our understanding of the distribution of the world’s energy resources and their impacts. A complete knowledge of the dynamics underpinning energy markets is necessary for decision-makers reconciling economic, energy, and environmental objectives. Those that anticipate global energy developments successfully can derive an advantage, while those that fail to do so risk making poor policy and investment decisions. Focused on solving the key challenges impeding the realization of advanced cellulosic biofuels and bioproducts in rural areas, Biomass and Biofuels: Advanced Biorefineries for Sustainable...

Biomass as Energy Source: Resources, Systems and Applications (Sustainable Energy Developments)

Biomass as Energy Source: Resources, Systems and Applications (Sustainable Energy Developments)
by Erik Dahlquist (Editor)

Global energy use is approximately 140 000 TWh per year. Interestingly, biomass production amounts to approximately 270 000 TWh per year, or roughly twice as much, whereas the official figure of biomass use for energy applications is 10-13% of the global energy use. This shows that biomass is not a marginal energy resource but more than capable of meeting all our energy and food needs, provided it is used efficiently. The use of food in generating energy has been extensively debated, but there is actually no need for it given the comprehensive resources available from agriculture and forestry waste. This book discusses the biomass resources available and aspects like efficient energy use. One way of using energy efficiently is to use waste biomass or cellulosic materials in biorefineries,...

© 2015