Science Current Events | Science News |

Handful of heavyweight trees per acre are forest champs

May 03, 2012

Big trees three or more feet in diameter accounted for nearly half the biomass measured at a Yosemite National Park site, yet represented only one percent of the trees growing there.

This means just a few towering white fir, sugar pine and incense cedars per acre at the Yosemite site are disproportionately responsible for photosynthesis, converting carbon dioxide into plant tissue and sequestering that carbon in the forest, sometimes for centuries, according to James Lutz, a University of Washington research scientist in environmental and forest sciences. He's lead author of a paper on the largest quantitative study yet of the importance of big trees in temperate forests being published online May 2 on PLoS ONE.

"In a forest comprised of younger trees that are generally the same age, if you lose one percent of the trees, you lose one percent of the biomass," he said. "In a forest with large trees like the one we studied, if you lose one percent of the trees, you could lose half the biomass."

In 2009, scientists including Lutz reported that the density of large-diameter trees declined nearly 25 percent between the 1930s and 1990s in Yosemite National Park, even though the area was never logged. Scientists including co-author Andrew Larson of the University of Montana, also have found notable numbers of large trees dying in similar areas across the West.

Because of this, scientists have been keen to study a plot large enough to detect forest ecosystem changes involving large trees, including the effects of climate variability and change, possible culprits in the declines, Lutz said.

The new 63-acre study site in the western part of Yosemite National Park is one of the largest, fully-mapped plots in the world and the largest old-growth plot in North America. The tally of what's there, including the counting and tagging of 34,500 live trees, was done by citizen scientists, mainly undergraduate college students, led by Lutz, Larson, Mark Swanson of Washington State University and James Freund of the UW.

Included was all above-ground biomass such as live trees, snags, downed woody debris, litter and what's called duff, the decaying plant matter on the ground under trees. Even when big trees die, they continue to dominate biomass in different ways. For example, 12 percent of standing snags were the remains of large-diameter trees, but still accounted for 60 percent of the total biomass of snags.

Live and dead biomass totaled 280 tons per acre (652 metric tons per hectare), a figure unmatched by any other forest in the Smithsonian Center for Tropical Forest Science network, a global network of 42 tropical and temperate forest plots including the one in Yosemite.

Trees in the western U.S. with trunks more than three feet across are typically at least 200 years old. Many forests that were heavily harvested in the 19th and 20th centuries, or those that are used as commercial forest lands today, don't generally have large-diameter trees, snags or large wood on the ground.

One implication of the research is that land managers may want to pay more attention to existing big trees, the co-authors said. Last year in the Yosemite National Park, for example, managers planning to set fires to clear out overgrown brush and densely packed small trees first used data from the study plot to figure out how many large trees to protect.

"Before the fires were started, crews raked around some of the large trees so debris wouldn't just sit and burn at the base of the tree and kill the cambium, the tissue under the bark that sustains trees," Lutz said.

In some younger forests that lack big trees, citizens and land managers might want to consider fostering the growth of a few big-trunked trees, Lutz said.

Another finding from the new work is that forest models based either on scaling theory or competition theory, which are useful for younger, more uniform forests, fail to capture how and where large trees occur in forests.

"These trees started growing in the Little Ice Age," Lutz said. "Current models can't fully capture the hundreds of years of dynamic processes that have shaped them during their lifetimes."

University of Washington

Related Biomass Current Events and Biomass News Articles

NREL explains the higher cellulolytic activity of a vital microorganism
Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) and the BioEnergy Science Center (BESC) say better understanding of a bacterium could lead to cheaper production of cellulosic ethanol and other advanced biofuels.

Secondary tropical forests absorb carbon at higher rate than old-growth forests
At the climate talks in Paris, all attention was focused on how humanity can reduce climate change by reducing carbon emissions, or by increasing carbon uptake.

Researchers create synthetic biopathway to turn agriculture waste into 'green' products
Researchers at the University of Minnesota have engineered a new synthetic biopathway that can more efficiently and cost-effectively turn agricultural waste, like corn stover and orange peels, into a variety of useful products ranging from spandex to chicken feed.

From allergens to anodes: Pollen derived battery electrodes
Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

Cause for hope: Secondary tropical forests put on weight fast
How fast tropical forests recover after deforestation has major consequences for climate change mitigation. A team including Smithsonian scientists discovered that some secondary tropical forests recover biomass quickly: half of the forests in the study attained 90 percent of old-growth forest levels in 66 years or less.

Over-hunting threatens Amazonian forest carbon stocks
Over-hunting of large mammals in tropical forests could make climate change worse according to new research from the University of East Anglia (UEA).

Weed blasting offers new control method for organic farmers
Weeds are a major scourge for organic growers, who often must invest in multiple control methods to protect crop yields.

Worldwide electricity production vulnerable to climate and water resource change
Climate change impacts and associated changes in water resources could lead to reductions in electricity production capacity for more than 60% of the power plants worldwide from 2040-2069, according to a new study published today in the journal Nature Climate Change.

Manure applications elevate nitrogen accumulation and loss
Nitrogen (N) is an essential nutrient for plant growth, and nitrogen fertilization - including the application of manures - is a major management strategy in agriculture across the globe.

Russia can be one of the most energy-competitive areas based on renewables
A fully renewable energy system is achievable and economically viable in Russia and Central Asia in 2030. Researchers from Lappeenranta University of Technology (LUT) modelled a renewable energy system for Russia and Central Asia. Results show that renewable energy is the cheapest option for the continent and can make Russia a very energy competitive region in the future.
More Biomass Current Events and Biomass News Articles

The Biomass Revolution (The Tisaian Chronicles Book 1)

The Biomass Revolution (The Tisaian Chronicles Book 1)

What would you do if you lived in a world where your every move was scrutinized by your own personal artificial intelligence--a world where everything is regulated, from power usage to relationships--a world where everything you thought you knew turned out to be a lie?

Welcome to Tisaia - The last hub of modern civilization in a world left scorched by the nuclear fires of the Biomass Wars. Surrounded by a fortress of steel walls and protected by a fierce and loyal Council of Royal Knights, Tisaia seems relatively safe to the average State worker and citizen. A plentiful supply of Biomass powers the cities and food is abundant, but security has come at a terrible cost. The State will do anything to protect its resources, even if it means suppressing the rights of its...

Biomass to Renewable Energy Processes

Biomass to Renewable Energy Processes
by Jay Cheng (Editor)

Continuously increased consumption of fossil fuels, decreased availability of easily accessible fossil fuels, significant contributions to climate change and wildly fluctuating fuels prices have combine to challenge the reliability and sustainability of our current energy supply. A possible solution to this energy challenge, biomass energy production, heavily dependent on sugarcane and corn production, is vulnerable to the fluctuation of the feedstock price. New technologies need to be developed to convert abundant biomass such as lignocellulosic materials into energy products in a cost-effective and environmentally friendly manner. An introduction to fundamental principles and practical applications, Biomass to Renewable Energy Processes explains the theories of biological processes,...

Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power

Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power
by Robert C. Brown (Editor), Christian Stevens (Editor)

Thermochemical pathways for biomass conversion offer opportunities for rapid and efficient processing of diverse feedstocks into fuels, chemicals and power. Thermochemical processing has several advantages relative to biochemical processing, including greater feedstock flexibility, conversion of both carbohydrate and lignin into products, faster reaction rates, and the ability to produce a diverse selection of fuels. Thermochemical Processing of Biomass examines the large number of possible pathways for converting biomass into fuels, chemicals and power through the use of heat and catalysts. The book presents a practical overview of the latest research in this rapidly developing field, highlighting the fundamental chemistry, technical applications and operating costs associated with...

Bioenergy: Biomass to Biofuels

Bioenergy: Biomass to Biofuels
by Anju Dahiya (Editor)

Depleting fossil fuel reserves and adverse effects of fluctuating oil prices have renewed interest in alternative and sustainable sources of energy. Bioenergy: Biomass to Biofuels takes on this topic and examines current and emerging feedstocks and advanced processes and technologies enabling the development of all possible alternative energy sources: solid (wood energy, grass energy, and other biomass), liquid (biodiesel, algae biofuel, ethanol), and gaseous/electric (biogas, syngas, bioelectricity). Divided into seven parts, Bioenergy gives thorough consideration to topics such as feedstocks, biomass production and utilization, life cycle analysis, Energy Return on Invested (EROI), integrated sustainability assessments, conversions technologies, biofuels economics and policy. In...

Process Design Strategies for Biomass Conversion Systems

Process Design Strategies for Biomass Conversion Systems
by Denny K. S. Ng (Author), Raymond R. Tan (Author), Dominic C. Y. Foo (Author), Mahmoud M. El-Halwagi (Author)

This book covers recent developments in process systems engineering (PSE) for efficient resource use in biomass conversion systems. It provides an overview of process development in biomass conversion systems with focus on biorefineries involving the production and coproduction of fuels, heating, cooling, and chemicals. The scope includes grassroots and retrofitting applications. In order to reach high levels of processing efficiency, it also covers techniques and applications of natural-resource (mass and energy) conservation. Technical, economic, environmental, and social aspects of biorefineries are discussed and reconciled. The assessment scales vary from unit- to process- and life-cycle or supply chain levels. The chapters are written by leading experts from around the world, and...

Biomass Pelletization: Standards and Production

Biomass Pelletization: Standards and Production
by A. Garcia-maraver (Author), A. Garcia-maraver (Editor), J. A. Perez-jimenez (Editor)

Environmental and energy dependency problems derived from high fossil fuels consumption have made necessary the development of new energy models that are renewable and sustainable, efficient, practical and economical, and cost effective, to meet the demand for a sustainable energy supply. Among renewable resources, biomass is destined to play an important role in these new energy models since agricultural and forestry residues are an energy resource which is produced in relatively large amounts throughout the world and regarded as a renewable and environmentally safe way of providing energy. Compiling information on the conversion of energy from biomass, the book focuses on the use of pellets as homogeneous solid biofuels. It describes all the changes that forestry and agricultural...

Want Cheap Gas?: Try BioFuels

Want Cheap Gas?: Try BioFuels
by Gregory Gebhart (Author)

Want Cheap Gas? is the complete rationale for using ethanol derived from starch and cellulose to lower gas prices. Already the US produces 15 billion gallons of starch bioethanol per year and by 2022 will be producding the same amount of cellulosic bioethanol. Mixing different amounts of ethanol with pure gasoline will yield E10, E13, and E85. E85 (85% ethanol and 15% gasoline) already sells for $1.00 less per gallon than E10.

Biomass: Fueling Change (Energy Revolution)

Biomass: Fueling Change (Energy Revolution)
by Niki Walker (Author)

This book is suitable for readers of ages 9-12. This is an exciting new book that explores bioenergy, which is energy derived from organic matter, to produce heat, run cars, and generate electricity.

Introduction to Biomass Energy Conversions

Introduction to Biomass Energy Conversions
by Sergio Capareda (Author)

The potential that biomass energy has to supplement traditional fuels and reduce greenhouse gas emissions has put it front and center in the plan to replace fossil-based fuels with renewable fuels. While much has been written about biomass conversions, no single textbook contains all the information needed to teach a biomass conversion course―until now. Introduction to Biomass Energy Conversions presents a comprehensive review of biomass resources available for conversion into heat, power, and biofuels. The textbook covers biomass characterization and discusses facilities, equipment, and standards (e.g. ASTM or NREL) used for analysis. It examines the range of biomass resources available for conversion and presents traditional biomass conversion processes along with extensive biomass...

Investigation in Ash Issues during Co-combustion of Coal and Biomass: Development of a Co-firing Advisory Tool

Investigation in Ash Issues during Co-combustion of Coal and Biomass: Development of a Co-firing Advisory Tool
by Veena Doshi (Author)

The co-firing technology of coal with biomass has been implemented to enhance the usage of biomass in power generation, thus reducing the release of greenhouse gas emissions. This study deals with the fireside issues, namely ash-related issues that arise during co-combustion of coal and biomass takes place. Ash release from biomass can lead to ash deposition problems such as fouling and slagging on surfaces of power generation boilers. The scope of this work includes the development of a conceptual model that predicts the ash release behaviour and chemical composition of inorganics in coal and biomass when combusted. An advanced analytical method was developed and introduced in this work to determine the speciation of biomass. The method known as pH extraction analysis was used to...

© 2016