Science Current Events | Science News | Brightsurf.com
 

Handful of heavyweight trees per acre are forest champs

May 03, 2012
Big trees three or more feet in diameter accounted for nearly half the biomass measured at a Yosemite National Park site, yet represented only one percent of the trees growing there.

This means just a few towering white fir, sugar pine and incense cedars per acre at the Yosemite site are disproportionately responsible for photosynthesis, converting carbon dioxide into plant tissue and sequestering that carbon in the forest, sometimes for centuries, according to James Lutz, a University of Washington research scientist in environmental and forest sciences. He's lead author of a paper on the largest quantitative study yet of the importance of big trees in temperate forests being published online May 2 on PLoS ONE.

"In a forest comprised of younger trees that are generally the same age, if you lose one percent of the trees, you lose one percent of the biomass," he said. "In a forest with large trees like the one we studied, if you lose one percent of the trees, you could lose half the biomass."

In 2009, scientists including Lutz reported that the density of large-diameter trees declined nearly 25 percent between the 1930s and 1990s in Yosemite National Park, even though the area was never logged. Scientists including co-author Andrew Larson of the University of Montana, also have found notable numbers of large trees dying in similar areas across the West.

Because of this, scientists have been keen to study a plot large enough to detect forest ecosystem changes involving large trees, including the effects of climate variability and change, possible culprits in the declines, Lutz said.

The new 63-acre study site in the western part of Yosemite National Park is one of the largest, fully-mapped plots in the world and the largest old-growth plot in North America. The tally of what's there, including the counting and tagging of 34,500 live trees, was done by citizen scientists, mainly undergraduate college students, led by Lutz, Larson, Mark Swanson of Washington State University and James Freund of the UW.

Included was all above-ground biomass such as live trees, snags, downed woody debris, litter and what's called duff, the decaying plant matter on the ground under trees. Even when big trees die, they continue to dominate biomass in different ways. For example, 12 percent of standing snags were the remains of large-diameter trees, but still accounted for 60 percent of the total biomass of snags.

Live and dead biomass totaled 280 tons per acre (652 metric tons per hectare), a figure unmatched by any other forest in the Smithsonian Center for Tropical Forest Science network, a global network of 42 tropical and temperate forest plots including the one in Yosemite.

Trees in the western U.S. with trunks more than three feet across are typically at least 200 years old. Many forests that were heavily harvested in the 19th and 20th centuries, or those that are used as commercial forest lands today, don't generally have large-diameter trees, snags or large wood on the ground.

One implication of the research is that land managers may want to pay more attention to existing big trees, the co-authors said. Last year in the Yosemite National Park, for example, managers planning to set fires to clear out overgrown brush and densely packed small trees first used data from the study plot to figure out how many large trees to protect.

"Before the fires were started, crews raked around some of the large trees so debris wouldn't just sit and burn at the base of the tree and kill the cambium, the tissue under the bark that sustains trees," Lutz said.

In some younger forests that lack big trees, citizens and land managers might want to consider fostering the growth of a few big-trunked trees, Lutz said.

Another finding from the new work is that forest models based either on scaling theory or competition theory, which are useful for younger, more uniform forests, fail to capture how and where large trees occur in forests.

"These trees started growing in the Little Ice Age," Lutz said. "Current models can't fully capture the hundreds of years of dynamic processes that have shaped them during their lifetimes."

University of Washington


Related Biomass Current Events and Biomass News Articles


WSU researchers produce jet fuel compounds from fungus
Washington State University researchers have found a way to make jet fuel from a common black fungus found in decaying leaves, soil and rotting fruit.

Ocean fronts improve climate and fishery production, study finds
A recent study by the University of Georgia found that ocean fronts--separate regions of warm and cool water as well as salt and fresh water -- act to increase production in the ocean.

Partially logged rainforests could be emitting more carbon than previously thought
Global carbon emissions from forests could have been underestimated because calculations have not fully accounted for the dead wood from logging.

Engineered softwood could transform pulp, paper and biofuel industries
Scientists today demonstrated the potential for softwoods to process more easily into pulp and paper if engineered to incorporate a key feature of hardwoods.

Stomach ulcers in cattle
Scientists at the Vetmeduni Vienna investigated whether stomach ulcers in cattle are related to the presence of certain bacteria.

Flourishing faster: How to make trees grow bigger and quicker
Scientists at The University of Manchester have discovered a way to make trees grow bigger and faster, which could increase supplies of renewable resources and help trees cope with the effects of climate change.

First report of a new crop virus in North America
The switchgrass exhibited mosaic symptoms--splotchy, discolored leaves--characteristic of a viral infection, yet tested negative for known infections. Deep sequencing, a new technology, revealed the plants were infected with a new virus in the genus mastrevirus, the first of its kind found in North America.

Recipe for saving coral reefs: Add more fish
Fish are the key ingredients in a new recipe to diagnose and restore degraded coral reef ecosystems, according to scientists from the Australian Institute of Marine Science, WCS, James Cook University, and other organizations in a new study in the journal Nature.

Recovery potential for the world's coral reef fish
A simple test of the number of fish living on a coral reef can be used as a roadmap to restore degraded reefs and fishers' livelihoods according to a global study published in the journal Nature.

Discovery by Virginia Tech may be breakthrough for hydrogen cars
A team of Virginia Tech researchers has discovered a way to create hydrogen fuel using a biological method that greatly reduces the time and money it takes to produce the zero-emissions fuel.
More Biomass Current Events and Biomass News Articles

Biomass Gasification, Pyrolysis and Torrefaction, Second Edition: Practical Design and Theory

Biomass Gasification, Pyrolysis and Torrefaction, Second Edition: Practical Design and Theory
by Prabir Basu (Author)


Biomass is the most widely used non-fossil fuel in the world. Biomass resources show a considerable potential in the long-term given the increasing proliferation of dedicated energy crops for biofuels. The second edition of Biomass Gasification and Pyrolysis is enhanced with new topics, such as torrefaction and cofiring, making it a versatile resource that not only explains the basic principles of energy conversion systems, but also provides valuable insight into the design of biomass conversion systems. This book will allow professionals, such as engineers, scientists, and operating personnel of biomass gasification, pyrolysis or torrefaction plants, to gain a better comprehension of the basics of biomass conversion. The author provides many worked out design problems, step-by-step...

The Biomass Revolution (The Tisaian Chronicles) (Volume 1)

The Biomass Revolution (The Tisaian Chronicles) (Volume 1)
by Nicholas Sansbury Smith (Author)


What would you do if you lived in a world where your every move was scrutinized by your own personal artificial intelligence--a world where everything is regulated, from power usage to relationships--a world where everything you thought you knew turned out to be a lie?  Welcome to Tisaia - The last hub of modern civilization in a world left scorched by the nuclear fires of the Biomass Wars. Surrounded by a fortress of steel walls and protected by a fierce and loyal Council of Royal Knights, Tisaia seems relatively safe to the average State worker and citizen. A plentiful supply of Biomass powers the cities and food is abundant, but security has come at a terrible cost. The State will do anything to protect its resources, even if it means suppressing the rights of its citizens and...

Biomass to Renewable Energy Processes

Biomass to Renewable Energy Processes
by Jay Cheng (Editor)


Continuously increased consumption of fossil fuels, decreased availability of easily accessible fossil fuels, significant contributions to climate change and wildly fluctuating fuels prices have combine to challenge the reliability and sustainability of our current energy supply. A possible solution to this energy challenge, biomass energy production, heavily dependent on sugarcane and corn production, is vulnerable to the fluctuation of the feedstock price. New technologies need to be developed to convert abundant biomass such as lignocellulosic materials into energy products in a cost-effective and environmentally friendly manner. An introduction to fundamental principles and practical applications, Biomass to Renewable Energy Processes explains the theories of biological processes,...

Biomass Processing Technologies

Biomass Processing Technologies
by Vladimir Strezov (Editor), Tim J. Evans (Editor)




Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes

Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes
by Wiebren de Jong (Author), J. Ruud van Ommen (Author)


Focusing on the conversion of biomass into gas or liquid fuels the book covers physical pre-treatment technologies, thermal, chemical and biochemical conversion technologies
• Details the latest biomass characterization techniques
• Explains the biochemical and thermochemical conversion processes
• Discusses the development of integrated biorefineries, which are similar to petroleum refineries in concept, covering such topics as reactor configurations and downstream processing
• Describes how to mitigate the environmental risks when using biomass as fuel
• Includes many problems, small projects, sample calculations and industrial application examples

Bioenergy: Biomass to Biofuels

Bioenergy: Biomass to Biofuels
by Anju Dahiya (Editor)


Depleting fossil fuel reserves and adverse effects of fluctuating oil prices have renewed interest in alternative and sustainable sources of energy. Bioenergy: Biomass to Biofuels takes on this topic and examines current and emerging feedstocks and advanced processes and technologies enabling the development of all possible alternative energy sources: solid (wood energy, grass energy, and other biomass), liquid (biodiesel, algae biofuel, ethanol), and gaseous/electric (biogas, syngas, bioelectricity). Divided into seven parts, Bioenergy gives thorough consideration to topics such as feedstocks, biomass production and utilization, life cycle analysis, Energy Return on Invested (EROI), integrated sustainability assessments, conversions technologies, biofuels economics and policy. In...

Biomass Power (Let's Discuss Energy Resources)

Biomass Power (Let's Discuss Energy Resources)
by Richard Spilsbury (Author), Louise Spilsbury (Author)


With supplies of non-renewable energy sources running low and the threat of global warming and climate change, there is an urgent need to look at other types of energy resources and how well they can meet our power needs. While new technologies are being developed, each energy resource comes at a cost. This series looks at each energy resource, the technology and cost of how it is used to meet power needs and how it impacts the environment and humans. Each book explains how that power is generated and where it is used, and then, using specific Let's Discuss panels, explores the various advantages and disadvantages that concern it's use as an alternative fuel source. Case studies examine specific usage examples where that source has either worked or not worked so that the reader can weigh...

Biomass: Fueling Change (Energy Revolution)

Biomass: Fueling Change (Energy Revolution)
by Niki Walker (Author)


FOR USE IN SCHOOLS AND LIBRARIES ONLY. This book examines the world's energy challenge, focusing on the concept of biopower and using several types of biomass as a renewable energy source to replace our dependence on fossil fuel.

Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power

Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power
by Robert C. Brown (Editor), Christian Stevens (Editor)


Thermochemical pathways for biomass conversion offer opportunities for rapid and efficient processing of diverse feedstocks into fuels, chemicals and power. Thermochemical processing has several advantages relative to biochemical processing, including greater feedstock flexibility, conversion of both carbohydrate and lignin into products, faster reaction rates, and the ability to produce a diverse selection of fuels. Thermochemical Processing of Biomass examines the large number of possible pathways for converting biomass into fuels, chemicals and power through the use of heat and catalysts. The book presents a practical overview of the latest research in this rapidly developing field, highlighting the fundamental chemistry, technical applications and operating costs associated with...

Fuel Production from Non-Food Biomass: Corn Stover

Fuel Production from Non-Food Biomass: Corn Stover
by Barnabas Gikonyo (Editor)


The practice of converting corn to ethanol is controversial, with debates currently being raged in both public policy and science. While biofuels from corn have important implications in alleviating some of the global energy crisis, critics argue that it takes away from vital agricultural products needed to feed the world’s growing population. The current volume maintains there is a third way, a method of producing biofuel that only uses biomass that is left behind after all agricultural and nutritional products have been harvested from corn. This biomass is referred to as corn stover. The book serves as an important introduction to this method of producing biofuels from agricultural waste. Edited by a professor from the State University of New York, Geneseo, this reference is...

© 2015 BrightSurf.com