Science Current Events | Science News | Brightsurf.com
 

Handful of heavyweight trees per acre are forest champs

May 03, 2012
Big trees three or more feet in diameter accounted for nearly half the biomass measured at a Yosemite National Park site, yet represented only one percent of the trees growing there.

This means just a few towering white fir, sugar pine and incense cedars per acre at the Yosemite site are disproportionately responsible for photosynthesis, converting carbon dioxide into plant tissue and sequestering that carbon in the forest, sometimes for centuries, according to James Lutz, a University of Washington research scientist in environmental and forest sciences. He's lead author of a paper on the largest quantitative study yet of the importance of big trees in temperate forests being published online May 2 on PLoS ONE.

"In a forest comprised of younger trees that are generally the same age, if you lose one percent of the trees, you lose one percent of the biomass," he said. "In a forest with large trees like the one we studied, if you lose one percent of the trees, you could lose half the biomass."

In 2009, scientists including Lutz reported that the density of large-diameter trees declined nearly 25 percent between the 1930s and 1990s in Yosemite National Park, even though the area was never logged. Scientists including co-author Andrew Larson of the University of Montana, also have found notable numbers of large trees dying in similar areas across the West.

Because of this, scientists have been keen to study a plot large enough to detect forest ecosystem changes involving large trees, including the effects of climate variability and change, possible culprits in the declines, Lutz said.

The new 63-acre study site in the western part of Yosemite National Park is one of the largest, fully-mapped plots in the world and the largest old-growth plot in North America. The tally of what's there, including the counting and tagging of 34,500 live trees, was done by citizen scientists, mainly undergraduate college students, led by Lutz, Larson, Mark Swanson of Washington State University and James Freund of the UW.

Included was all above-ground biomass such as live trees, snags, downed woody debris, litter and what's called duff, the decaying plant matter on the ground under trees. Even when big trees die, they continue to dominate biomass in different ways. For example, 12 percent of standing snags were the remains of large-diameter trees, but still accounted for 60 percent of the total biomass of snags.

Live and dead biomass totaled 280 tons per acre (652 metric tons per hectare), a figure unmatched by any other forest in the Smithsonian Center for Tropical Forest Science network, a global network of 42 tropical and temperate forest plots including the one in Yosemite.

Trees in the western U.S. with trunks more than three feet across are typically at least 200 years old. Many forests that were heavily harvested in the 19th and 20th centuries, or those that are used as commercial forest lands today, don't generally have large-diameter trees, snags or large wood on the ground.

One implication of the research is that land managers may want to pay more attention to existing big trees, the co-authors said. Last year in the Yosemite National Park, for example, managers planning to set fires to clear out overgrown brush and densely packed small trees first used data from the study plot to figure out how many large trees to protect.

"Before the fires were started, crews raked around some of the large trees so debris wouldn't just sit and burn at the base of the tree and kill the cambium, the tissue under the bark that sustains trees," Lutz said.

In some younger forests that lack big trees, citizens and land managers might want to consider fostering the growth of a few big-trunked trees, Lutz said.

Another finding from the new work is that forest models based either on scaling theory or competition theory, which are useful for younger, more uniform forests, fail to capture how and where large trees occur in forests.

"These trees started growing in the Little Ice Age," Lutz said. "Current models can't fully capture the hundreds of years of dynamic processes that have shaped them during their lifetimes."

University of Washington


Related Biomass Current Events and Biomass News Articles


Lionfish analysis reveals most vulnerable prey as invasion continues
If you live in lionfish territory in the Atlantic Ocean, the last thing you want to be is a small fish with a long, skinny body, resting by yourself at night, near the bottom of the seafloor.

Vermicompost leachate improves tomato seedling growth
Worldwide, drought conditions, extreme temperatures, and high soil saline content all have negative effects on tomato crops.

Salamanders Are a More Abundant Food Source in Forest Ecosystems Than Previously Thought
In the 1970s, ecologists published results from one of the first whole-forest ecosystem studies ever conducted in Hubbard Brook, New Hampshire.

Climate change in drylands
Approximately 40 percent of the earth's surface is covered by drylands in which average annual precipitation is lower than evaporation.

Many microbiome studies flawed by contamination
Many published microbiome studies are likely to have been contaminated and may incorrectly report the presence of microorganisms unintentionally introduced from the laboratory environment, says a study published in the open access journal BMC Biology.

IU biologists collaborate to refine climate change modeling tools
A new climate change modeling tool developed by scientists at Indiana University, Princeton University and the National Oceanographic and Atmospheric Administration finds that carbon dioxide removal from the atmosphere owing to greater plant growth from rising CO2 levels will be partially offset by changes in the activity of soil microbes that derive their energy from plant root growth.

Termite of the sea's wood destruction strategy revealed
The sight of termites anywhere near one's house is enough to raise a homeowner's concerns about the potential damage these insects might inflict.

Synthetic Biology for Space Exploration
Does synthetic biology hold the key to manned space exploration of the Moon and Mars? Berkeley Lab researchers have used synthetic biology to produce an inexpensive and reliable microbial-based alternative to the world's most effective anti-malaria drug, and to develop clean, green and sustainable alternatives to gasoline, diesel and jet fuels.

A fraction of the global military spending could save the planet's biodiversity
A fundamental step-change involving an increase in funding and political commitment is urgently needed to ensure that protected areas deliver their full conservation, social and economic potential, according to an article published today in Nature by experts from Wildlife Conservation Society, the University of Queensland, and the IUCN World Commission on Protected Areas (WCPA).

New process transforms wood, crop waste into valuable chemicals
Scientists today disclosed a new method to convert lignin, a biomass waste product, into simple chemicals.
More Biomass Current Events and Biomass News Articles

The Biomass Revolution (The Tisaian Chronicles Book 1)

The Biomass Revolution (The Tisaian Chronicles Book 1)


What would you do if you lived in a world where your every move was scrutinized by your own personal artificial intelligence--a world where everything is regulated, from power usage to relationships--a world where everything you thought you knew turned out to be a lie?

Welcome to Tisaia - The last hub of modern civilization in a world left scorched by the nuclear fires of the Biomass Wars. Surrounded by a fortress of steel walls and protected by a fierce and loyal Council of Royal Knights, Tisaia seems relatively safe to the average State worker and citizen. A plentiful supply of Biomass powers the cities and food is abundant, but security has come at a terrible cost. The State will do anything to protect its resources, even if it means suppressing the rights of its citizens...

Biomass to Renewable Energy Processes

Biomass to Renewable Energy Processes
by Jay Cheng (Editor)


Continuously increased consumption of fossil fuels, decreased availability of easily accessible fossil fuels, significant contributions to climate change and wildly fluctuating fuels prices have combine to challenge the reliability and sustainability of our current energy supply. A possible solution to this energy challenge, biomass energy production, heavily dependent on sugarcane and corn production, is vulnerable to the fluctuation of the feedstock price. New technologies need to be developed to convert abundant biomass such as lignocellulosic materials into energy products in a cost-effective and environmentally friendly manner. An introduction to fundamental principles and practical applications, Biomass to Renewable Energy Processes explains the theories of biological processes,...

Biomass: Fueling Change (Energy Revolution)

Biomass: Fueling Change (Energy Revolution)
by Niki Walker (Author)


FOR USE IN SCHOOLS AND LIBRARIES ONLY. This book examines the world's energy challenge, focusing on the concept of biopower and using several types of biomass as a renewable energy source to replace our dependence on fossil fuel.

Biomass Gasification, Pyrolysis and Torrefaction, Second Edition: Practical Design and Theory

Biomass Gasification, Pyrolysis and Torrefaction, Second Edition: Practical Design and Theory
by Prabir Basu (Author)


Biomass is the most widely used non-fossil fuel in the world. Biomass resources show a considerable potential in the long-term given the increasing proliferation of dedicated energy crops for biofuels. The second edition of Biomass Gasification and Pyrolysis is enhanced with new topics, such as torrefaction and cofiring, making it a versatile resource that not only explains the basic principles of energy conversion systems, but also provides valuable insight into the design of biomass conversion systems. This book will allow professionals, such as engineers, scientists, and operating personnel of biomass gasification, pyrolysis or torrefaction plants, to gain a better comprehension of the basics of biomass conversion. The author provides many worked out design problems, step-by-step...

Biomass Processing Technologies

Biomass Processing Technologies
by Vladimir Strezov (Editor), Tim J. Evans (Editor)




Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power

Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power
by Robert C. Brown (Editor), Christian Stevens (Editor)


This book is a comprehensive examination of the large number of possible pathways for converting biomass into fuels and power through thermochemical processes. The book brings together a widely scattered body of information into a single volume that allows comparison of the various thermochemical pathways. The thermochemical processes considered include combustion, gasification, fast pyrolysis, hydrothermal treating, and catalytic conversion of sugars. The book also includes chapters on the upgrading of syngas and bio-oil to liquid transportation fuels, and the economics of the various processes for producing fuels and power.

2011 Biomass Energy and Biofuels Encyclopedia - Comprehensive Coverage of All Aspects of Alternative Fuels, Biodiesel, Ethanol, Methanol, Markets and Technology (DVD-ROM)

2011 Biomass Energy and Biofuels Encyclopedia - Comprehensive Coverage of All Aspects of Alternative Fuels, Biodiesel, Ethanol, Methanol, Markets and Technology (DVD-ROM)
by U.S. Government (Author), Department of Energy (DOE) (Author), National Renewable Energy Laboratory (NREL) (Author)


This electronic book on DVD-ROM provides an unprecedented encyclopedic collection of authoritative official documents, reference books, guides, handbooks, and technical reports about every conceivable aspect of biomass energy and biofuels, including alternative fuels like biodiesel, ethanol, methanol - with over 70,000 pages of invaluable material presented in Adobe Acrobat PDF format. This incredible library has been revised and updated for this 2011 edition. Progressive Management has been a leader in renewable energy publishing for nearly a decade, and we believe that this exceptional collection provides the most comprehensive set of government biomass and biofuel documents ever offered! If you have a professional or personal interest in biomass, you will find this disc to be an...

Catalytic Hydrogenation for Biomass Valorization (RSC Energy and Environment Series)

Catalytic Hydrogenation for Biomass Valorization (RSC Energy and Environment Series)
by Roberto Rinaldi (Editor), Laurie Peter (Editor), Ferdi Schüth (Editor), Heinz Frei (Editor), Tim S. Zhao (Editor), Dmitry Murzin (Editor), Bert Sels (Editor), Atsushi Fukuoka (Editor), Jose L.G Fierro (Editor), Regina Palkovits (Editor), Jan-Dierk Grunwaldt (Editor), Jurgen Klankermayer (Editor), Eduardo Falabella Sousa-Aguiar (Editor), An Philippaerts (Editor), Walter Leitner (Editor), Ulf Schuchardt (Editor), Erik Heres (Editor), Tao Zhang (Editor)


The efficient conversion of biomass to value-added products has become a major research area in the pursuit of alternatives to petroleum-based feedstocks; hydrogenation and hydrogenolysis are important tools to achieving this aim. This book presents comprehensive coverage of the different catalysts for these reactions, targeting the efficient conversion of bio-based molecules and biopolymers. The editor, Roberto Rinaldi, is an acknowledged leader in the field of biomass conversion, and has brought together experts from across the globe to examine all aspects of the process, including the solvents, catalysts and feedstocks used in modern biorefineries. Consideration is also given to the fundamentals of running a plant, such as equipment and safety issues. As the biorefinery industry...

Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes

Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes
by Wiebren de Jong (Author), J. Ruud van Ommen (Author)


Focusing on the conversion of biomass into gas or liquid fuels the book covers physical pre-treatment technologies, thermal, chemical and biochemical conversion technologies
• Details the latest biomass characterization techniques
• Explains the biochemical and thermochemical conversion processes
• Discusses the development of integrated biorefineries, which are similar to petroleum refineries in concept, covering such topics as reactor configurations and downstream processing
• Describes how to mitigate the environmental risks when using biomass as fuel
• Includes many problems, small projects, sample calculations and industrial application examples

The Biomass Assessment Handbook

The Biomass Assessment Handbook
by Routledge


The increasing importance of biomass as a renewable energy source has lead to an acute need for reliable and detailed information on its assessment, consumption and supply. Responding to this need, and overcoming the lack of standardized measurement and accounting procedures, this handbook provides the reader with the skills to understand the biomass resource base, the tools to assess the resource, and explores the pros and cons of exploitation. Topics covered include assessment methods for woody and herbaceous biomass, biomass supply and consumption, remote sensing techniques as well as vital policy issues.

International case studies, ranging from techniques for measuring tree volume to transporting biomass, help to illustrate step-by-step methods and are based on field work...

© 2014 BrightSurf.com