Science Current Events | Science News | Brightsurf.com
 

Atomic-scale visualization of electron pairing in iron superconductors

May 04, 2012
Findings support magnetic pairing theory that could lead to new improved superconductors

UPTON, NY - By measuring how strongly electrons are bound together to form Cooper pairs in an iron-based superconductor, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Cornell University, St. Andrews University, and collaborators provide direct evidence supporting theories in which magnetism holds the key to this material's ability to carry current with no resistance. Because the measurements take into account the electronic bands and directions in which the electrons are traveling, which was central to testing the theoretical predictions, this research strengthens confidence that this type of theory may one day be used to identify or design new materials with improved properties - namely, superconductors operating at temperatures far higher than today's.

The findings are published in the May 4, 2012 issue of Science.

"In the best possible world you would be able to take this theory and plug in different chemical elements until you find a combination that should work as a superconductor at higher temperatures," said team leader Séamus Davis, Director of the Center for Emergent Superconductivity (http://www.bnl.gov/energy/ces/) at Brookhaven and the J.G. White Distinguished Professor of Physical Sciences at Cornell University. Such materials could be used for real world, energy-saving technologies, such as zero-loss power transmission lines, without the need for expensive coolants.

Scientists have been trying to understand the mechanism underlying so-called "high-temperature" superconductivity ever since discovering materials that could carry current with no resistance at temperatures somewhat above the operating realm of conventional superconductors, which must be chilled to near absolute zero (0 kelvin, or -273° Celsius). Though still mighty chilly, these high-Tc materials' operating temperatures - some as high as 145K (-130°C) - offer hope that such materials could one day be designed to operate at room temperature.

One key to superconductivity is the formation of electron pairs. Scientists hypothesized that if these negatively charged particles have their magnetic moments pointing in opposite directions, they could overcome their mutual repulsion to join forces in so-called Cooper pairs - thus carrying current with no loss.

"Many people suspected you could take materials that naturally have alternating magnetic moments on adjacent electrons - antiferromagnetic materials - and convert them into superconductors," Davis said. But to prove this conjecture hasn't been possible with copper-based, or cuprate, superconductors - the first high-Tc superconductors discovered starting some 25 years ago. "You can make a robust antiferromagnetic cuprate insulator, but in that state it's hard to get the magnetic electrons to pair and then move around and make a superconductor," Davis said.

Then, in 2008, when iron-based superconductors were discovered, the idea that magnetism plays a role in high-Tc superconductivity was revived. But determining that role was a very complex problem.

"In each iron atom there are five magnetic electrons, not just one," Davis said. "And each, as it moves around the crystal, does so in a separate electronic band. In order to find out if the magnetic interactions between electrons are generating the superconductivity, you have to measure what's called the anisotropic energy gap - how strongly bound together the electrons are in a pair - depending on the electrons' directions on the different electronic bands."

Theorists Dung-Hai Lee of the University of California at Berkeley, Peter Hirschfeld of the University of Florida, and Andrey Chubukov of the University of Wisconsin among others had developed different versions of a theory that predicts what those measurements should be if magnetism were the mechanism for superconductivity.

"It was our job to test those predictions," Davis said. But at first, the techniques didn't exist to make the measurements. "We had to invent them," Davis said.

Two scientists working with Davis, Milan P. Allan of Brookhaven, Cornell, and the University of Saint Andrews (where Davis also teaches) and Andreas W. Rost of Cornell and St. Andrews - the lead authors on the paper - figured out how to do the experiments and identified an iron-based material (lithium iron arsenide) in which to test the predictions.

Their method, multi-band Bogoliubov quasiparticle scattering interference, found the "signature" predicted by the theorists:

"The strength of the 'glue' holding the pairs together is different on the different bands, and on each band it depends on the direction that the electrons are traveling - with the pairing usually being stronger in a given direction than at 45° to that direction," Davis said.

"This is the first experimental evidence direct from the electronic structure in support of the theories that the mechanism for superconductivity in iron-based superconductors is due primarily to magnetic interactions," he said.

The next step is to use the same technique to determine whether the theory holds true for other iron superconductors. "We and others are working on that now," Davis said.

If those experiments show that the theory is indeed correct, the model could then be used to predict the properties of other elements and combinations - and ideally point the way toward engineering new materials and higher-temperature superconductors.

DOE/Brookhaven National Laboratory


Related Superconductors Current Events and Superconductors News Articles


Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity
A new study pins down a major factor behind the appearance of superconductivity-the ability to conduct electricity with 100 percent efficiency-in a promising copper-oxide material.

Scientists open door to better solar cells, superconductors and hard-drives
Using DESY's bright research light sources, scientists have opened a new door to better solar cells, novel superconductors and smaller hard-drives.

Novel technique developed by NUS scientists opens door to better solar cells
A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to study the interface between materials, shedding light on the new properties that arise when two materials are put together.

Emerging research suggests a new paradigm for
An international team of scientists has reported the first experimental observation of the quantum critical point (QCP) in the extensively studied "unconventional superconductor" TiSe2, finding that it does not reside as predicted within the superconducting dome of the phase diagram, but rather at a full GPa higher in pressure.

One Kind of Supersymmetry Shown to Emerge Naturally
UC Santa Barbara physicist Tarun Grover has provided definitive mathematical evidence for supersymmetry in a condensed matter system.

Notre Dame researchers provide new insights into quantum dynamics and quantum chaos
A team of researchers led by University of Notre Dame physicist Boldizsar Janko has announced analytical prediction and numerical verification of novel quantum rotor states in nanostructured superconductors.

Research brings new control over topological insulator
An international team of scientists investigating the electronic properties of ultra-thin films of new materials - topological insulators (TIs) - has demonstrated a new method to tune their unique properties using strain.

Pseudogap theory puts physicists closer to high temperature superconductors
Physicists are one step closer to developing the world's first room-temperature superconductor thanks to a new theory from the University of Waterloo, Harvard and Perimeter Institute.

Colored diamonds are a superconductor's best friend
Flawed but colorful diamonds are among the most sensitive detectors of magnetic fields known today, allowing physicists to explore the minuscule magnetic fields in metals, exotic materials and even human tissue.

Ultra-fast laser spectroscopy lights way to understanding new materials
Scientists at the U.S. Department of Energy's Ames Laboratory are revealing the mysteries of new materials using ultra-fast laser spectroscopy, similar to high-speed photography where many quick images reveal subtle movements and changes inside the materials.
More Superconductors Current Events and Superconductors News Articles

Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors
by B. Andrei Bernevig (Author), Taylor L. Hughes (Contributor)



This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom.
The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and...

Introduction to Superconductivity: Second Edition (Dover Books on Physics) (Vol i)

Introduction to Superconductivity: Second Edition (Dover Books on Physics) (Vol i)
by Michael Tinkham (Author), Physics (Author)


Well known for its accessibility to graduate students and experimental physicists, this volume emphasizes physical arguments and minimizes theoretical formalism. The second edition of this classic text features revisions by the author that improve its user-friendly qualities, and an introductory survey of latter-day developments in classic superconductivity enhances the volume’s value as a reference for researchers. Starting with a historical overview, the text proceeds with an introduction to the electrodynamics of superconductors and presents expositions of the Bardeen-Cooper-Schrieffer theory and the Ginzburg-Landau theory. Additional subjects include magnetic properties of classic type II superconductors; the Josephson effect (both in terms of basic phenomena and applications and of...

Superconductivity: A Very Short Introduction

Superconductivity: A Very Short Introduction
by Stephen J. Blundell (Author)


Superconductivity--the flow of electric current without resistance in certain materials as temperatures near absolute zero--is one of the greatest discoveries of 20th century physics, but it can seem impenetrable to those who lack a solid scientific background. Outlining the fascinating history of how superconductivity was discovered, and the race to understand its many mysterious and counter-intuitive phenomena, Stephen Blundell explains in accessible terms the theories that have been developed to explain it, and how they have influenced other areas of science, including the Higgs boson of particle physics and ideas about the early Universe. This Very Short Introduction examines the many strange phenomena observed in superconducting materials, the latest developments in high-temperature...

  Low Magnetic Fields in Anisotropic Superconductors (Lecture Notes in Physics Monographs)
by Allan J. Greer (Author), William J. Kossler (Author)


The authors present a theoretical and numerical study of anisotropic high-temperature materials using techniques of muon spin rotation spectroscopy. Using the London theory, the method obtains information on the microscopic magnetic fields in the probe. The muon spin rotation technique is presented in some detail, especially the muon behaviour in magnetic fields. The authors then describe the superconductor and present a prescription for numerical calculations of the fields. These in turn are used to develop numerical simulations of muon stopping in superconductors. The results are presented graphically. This is the first text to combine muon spectroscopy with Fourier methods in scientific computing. The book addresses researchers including those working in industry.

The Breakthrough: The Race for the Superconductor

The Breakthrough: The Race for the Superconductor
by Robert M. Hazen (Author)


How three scientists unlocked the secrets of superconductivity and made a discover that will change the way we live.

Superconductivity: Volume 1: Conventional and Unconventional Superconductors Volume 2: Novel Superconductors (v. 1)

Superconductivity: Volume 1: Conventional and Unconventional Superconductors Volume 2: Novel Superconductors (v. 1)
by Karl-Heinz Bennemann (Editor), John B. Ketterson (Editor)


This extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in superconductivity. Covering the entire field, this unparalleled resource carefully blends theoretical studies with experimental results to provide an indispensable foundation for further research. Leading researchers, including Nobel laureates, describe the state of the art in conventional and unconventional superconductors. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued, intense research into electron-phone based superconductivity.

Superconductors

Superconductors
by A. V. Narlikar (Author)


Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text....

The Physics of Superconductors, Vol. 1: Conventional and High-Tc Superconductors

The Physics of Superconductors, Vol. 1: Conventional and High-Tc Superconductors
by Karl-Heinz Bennemann (Editor), John B. Ketterson (Editor)


This is the first volume of a comprehensive two-volume treatise on superconductivity that represents the first such publication since the earlier work by R. Parks. It systematically reviews the basic physics and recent advances in the field. Leading researchers describe the state of the art in conventional phonon-induced superconductivity, high-Tc superconductivity, and novel superconductivity. After an introduction and historical overview, the leaders in the special fields of research give a comprehensive survey of the basics and the state of the art in chapters covering the entire field of superconductivity, including conventional and unconventional superconductors. Important new results are reported in a manner intended to stimulate further research. Numerous illustrations, diagrams...

Ugly's Electrical References, 2014 Edition

Ugly's Electrical References, 2014 Edition
by Jones & Bartlett Learning (Author)


Ugly's Electrical References, 2014 Edition is designed to be used as an on-the-job reference. Used worldwide by electricians, engineers, contractors, designers, maintenance workers, instructors, and the military; Ugly's contains the most commonly required electrical information in an easy-to-read and easy-to-access format. Ugly's presents a succinct portrait of the most pertinent information all electricians need at their fingertips, including: mathematical formulas, National Electrical Code tables, wiring configurations, conduit bending, voltage drops, and life-saving first aid procedures.

Applications of High Temperature Superconductors to Electric Power Equipment

Applications of High Temperature Superconductors to Electric Power Equipment
by Swarn S. Kalsi (Author)


The only one-stop reference to design, analysis, and manufacturing concepts for power devices utilizing HTS.High temperature superconductors (HTS) have been used for building many devices for electric grids worldwide and for large ship propulsion motors for the U.S. Navy. And yet, there has been no single source discussing theory and design issues relating to power applications of HTS—until now. This book provides design and analysis for various devices and includes examples of devices built over the last decade.Starting with a complete overview of HTS, the subsequent chapters are dedicated to specific devices: cooling and thermal insulation systems; rotating AC and DC machines; transformers; fault current limiters; power cables; and Maglev transport. As applicable, each chapter...

© 2014 BrightSurf.com