Science Current Events | Science News | Brightsurf.com
 

Light touch keeps a grip on delicate nanoparticles

May 04, 2012

Using a refined technique for trapping and manipulating nanoparticles, researchers at the National Institute of Standards and Technology (NIST) have extended the trapped particles' useful life more than tenfold.* This new approach, which one researcher likens to "attracting moths," promises to give experimenters the trapping time they need to build nanoscale structures and may open the way to working with nanoparticles inside biological cells without damaging the cells with intense laser light.

Scientists routinely trap and move nanoparticles in a solution with "optical tweezers"-a laser focused to a very small point. The tiny dot of laser light creates a strong electric field, or potential well, that attracts particles to the center of the beam. Although the particles are attracted into the field, the molecules of the fluid they are suspended in tend to push them out of the well. This effect only gets worse as particle size decreases because the laser's influence over a particle's movement gets weaker as the particle gets smaller. One can always turn up the power of the laser to generate a stronger electric field, but doing that can fry the nanoparticles too quickly to do anything meaningful with them-if it can hold them at all.

NIST researchers' new approach uses a control and feedback system that nudges the nanoparticle only when needed, lowering the average intensity of the beam and increasing the lifetime of the nanoparticle while reducing its tendency to wander. According to Thomas LeBrun, they do this by turning off the laser when the nanoparticle reaches the center and by constantly tracking the particle and moving the tweezers as the particle moves.

"You can think of it like attracting moths in the dark with a flashlight," says LeBrun. "A moth is naturally attracted to the flashlight beam and will follow it even as the moth flutters around apparently at random. We follow the fluttering particle with our flashlight beam as the particle is pushed around by the neighboring molecules in the fluid. We make the light brighter when it gets too far off course, and we turn the light off when it is where we want it to be. This lets us maximize the time that the nanoparticle is under our control while minimizing the time that the beam is on, increasing the particle's lifetime in the trap."

Using this method at constant average beam power, 100-nanometer gold particles remained trapped 26 times longer than had been seen in previous experiments. Silica particles 350 nanometers in diameter lasted 22 times longer, but with the average beam power reduced by 33 percent. LeBrun says that their approach should be able to be combined with other techniques to trap and hold even smaller nanoparticles for extended periods without damaging them.

"We're more than an order of magnitude ahead of where we were before," says LeBrun. "We now hope to begin building complex nanoscale devices and testing nanoparticles as sensors and drugs in living cells."

###

* A. Balijepalli, J. Gorman, S. Gupta and T. LeBrun. Significantly Improved Trapping Lifetime of Nanoparticles in an Optical Trap using Feedback Control. Nano Letters. April 10, 2012. Available online http://3249238492kljf-pubs.acs.org/doi/abs/10.1021/nl300301x

National Institute of Standards and Technology (NIST)


Related Nanoparticles Current Events and Nanoparticles News Articles


Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells
An experimental nanoparticle therapy that combines low-density lipoproteins (LDL) and fish oil preferentially kills primary liver cancer cells without harming healthy cells, UT Southwestern Medical Center researchers report.

Lithium battery catalyst found to harm key soil microorganism
The material at the heart of the lithium ion batteries that power electric vehicles, laptop computers and smartphones has been shown to impair a key soil bacterium, according to new research published online in the journal Chemistry of Materials.

Scientists have put a high precision blood assay into a simple test strip
Researchers from the General Physics Institute of the Russian Academy of Sciences (GPI RAS) and Moscow Institute of Physics and Technology (MIPT) have developed a new biosensor test system based on magnetic nanoparticles. It is designed to provide highly accurate measurements of the concentration of protein molecules (e.g. markers, which indicate the onset or development of a disease) in various samples, including opaque solutions or strongly coloured liquids.

Host-guest nanowires for efficient water splitting and solar energy storage
California is committed to 33 percent energy from renewable resources by 2020. With that deadline fast approaching, researchers across the state are busy exploring options.

New research uses nanotechnology to prevent preterm birth
Using nanoparticles to engineer a special drug, a team of researchers has demonstrated in mice a new way to both reduce preterm birth and avoid the risks of medication in pregnancy to unborn babies.

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene
Fuel cells convert the chemical energy stored in hydrogen (H2) into electrical energy by electrochemically "combusting" hydrogen gas with oxygen (O2) from the air into water (H2O), thereby generating electricity.

New fluorescent nanomaterials whose inspiration was taken from plant antenna systems
These new multifunctional materials aim to imitate the photosynthetic organisms of plants. These microorganisms consist of thousands of chlorophyll molecules embedded in a protein matrix, which provides them with a specific orientation/arrangement and intermolecular distance.

Highly efficient heavy metal ions filter
In November 2015, Brazil experienced an unparalleled environmental disaster. When two dams broke at an iron ore mine, a poisonous cocktail of heavy metals was sent pouring into the Rio Doce, reaching the Atlantic some days later.

Optogenetic technology developed at UMMS uses light to trigger immunotherapy
A new optogenetic technology developed by scientists at the University of Massachusetts Medical School and Texas A&M Health Science Center Institute of Biosciences & Technology, called optogenetic immunomodulation, is capable of turning on immune cells to attack melanoma tumors in mice.

Scientists synthesize nanoparticles that can deliver tumor suppressors to damaged livers
UT Southwestern Medical Center chemists have successfully used synthetic nanoparticles to deliver tumor-suppressing therapies to diseased livers with cancer, an important hurdle scientists have been struggling to conquer.
More Nanoparticles Current Events and Nanoparticles News Articles

Nanoparticles - Nanocomposites Ãâ Nanomaterials: An Introduction for Beginners

Nanoparticles - Nanocomposites – Nanomaterials: An Introduction for Beginners
by Dieter Vollath (Author)


Meeting the demand for a readily understandable introduction to nanomaterials and nanotechnology, this textbook specifically addresses the needs of students - and engineers - who need to get the gist of nanoscale phenomena in materials without having to delve too deeply into the physical and chemical details.

The book begins with an overview of the consequences of small particle size, such as the growing importance of surface effects, and covers successful, field-tested synthesis techniques of nanomaterials. The largest part of the book is devoted to the particular magnetic, optical, electrical and mechanical properties of materials at the nanoscale, leading on to emerging and already commercialized applications, such as nanofluids in magnetic resonance imaging,...

Nanoparticles: From Theory to Application

Nanoparticles: From Theory to Application
by Günter Schmid (Editor)


Very small particles are able to show astonishing properties. For example, gold atoms can be combined like strings of pearls, while nanoparticles can form one-, two- and three-dimensional layers. These assemblies can be used, for instance, as semiconductors, but other electronic as well as optical properties are possible.
An introduction to the booming field of "nanoworld" or "nanoscience", from fundamental principles to their use in novel applications.
With its clear structure and comprehensive coverage, backed by numerous examples from recent literature, this is a prime reference for chemists and materials scientists working with and developing nanoparticle systems.
A bestselling title in its second edition. A must-have reference for chemists and materials scientists.


Nanoparticles in the Fight Against Parasites (Parasitology Research Monographs)

Nanoparticles in the Fight Against Parasites (Parasitology Research Monographs)
by Heinz Mehlhorn (Editor)


This book sheds new light on the use of nanoparticles in the fields of parasitology and public and animal health.​ Nanotechnology has been used in many fields of research and in practical applications. A special subgroup is represented by the so-called nanobiotechnology, which is a multidisciplinary integration of biotechnology, nanotechnology, chemical processing, material science and engineering. In the fields of parasitology and public and animal health this technology has been used to develop systems, wherein acaricides and insecticides are included. This technique avoids direct contact of the hosts of parasites (animals, humans) with the insecticides/acaricides and thus minimizes effects on their health and also the development of resistances of the vectors (ticks, mosquitos, flies...

Silver Nanoparticles: From Silver Halide Photography to Plasmonics

Silver Nanoparticles: From Silver Halide Photography to Plasmonics
by Tadaaki Tani (Author)


Nanoscience and nanotechnology concern themselves with the research and application of extremely small things and can be used across all scientific fields such as physics, chemistry, biology, material science and engineering. Nanoparticles are of great scientific interest as they provide a bridge between bulk materials and atomic or molecular structures. Interesting and unexpected properties of nanoparticles are largely due to the large surface area of the material. Nanoparticles of noble metals including silver (Ag) attract the interest of many researchers owing to their high potential for plasmonic devices in future. On the other hand, nanoparticles of silver (Ag) and silver halides (AgX) have played central roles and have been extensively studied for many years in silver halide (AgX)...

Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery (Nanostructure Science and Technology)

Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery (Nanostructure Science and Technology)
by Sonke Svenson (Editor), Robert K. Prud'homme (Editor)


This book clearly demonstrates the progression of nanoparticle therapeutics from basic research to applications. This book, unlike others covering nanoparticles used in medical applications, presents the medical challenges that can be reduced or even overcome by recent advances in nanoscale drug delivery. Each chapter highlights recent progress in the design and engineering of select multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy.

Nanoparticles: Preparation and Characterization

Nanoparticles: Preparation and Characterization
by Momentum Press


Nanotechnology and nanoparticles have emerged as an important tool towards improving cancer therapeutics and diagnostics. Recognizing the indispensable role of nanoparticles, specifically in targeted delivery of chemotherapeutic and other anti-cancer agents to tumors, this book provides a comprehensive account of the different methods used for the preparation of nanoparticles, including the mechanism behind each method, for a beginner in the field. The authors describe he commonly used methods of physical post-synthesis characterization, as well as the toxicity aspects of nanoparticles, particularly the effect of nanoparticles on different systems of the human body. Appreciating the interdisciplinary nature of nanotechnology applications in cancer drug delivery, a brief description of the...

Nanoparticle- and Microparticle-based Delivery Systems: Encapsulation, Protection and Release of Active Compounds

Nanoparticle- and Microparticle-based Delivery Systems: Encapsulation, Protection and Release of Active Compounds
by David Julian McClements (Author)


Recent developments in nanoparticle and microparticle delivery systems are revolutionizing delivery systems in the food industry. These developments have the potential to solve many of the technical challenges involved in creating encapsulation, protection, and delivery of active ingredients, such as colors, flavors, preservatives, vitamins, minerals, and nutraceuticals. Nanoparticle- and Microparticle-based Delivery Systems: Encapsulation, Protection and Release of Active Compounds explores various types of colloidal delivery systems available for encapsulating active ingredients, highlighting their relative advantages and limitations and their use. Written by an international authority known for his clear and rigorous technical writing style, this book discusses the numerous kinds of...

Handbook of Nanoparticles

Handbook of Nanoparticles
by Mahmood Aliofkhazraei (Editor)


This Handbook covers all aspects of Nanoparticles, from their preparation to their practical application. The chapters present different ways to synthesize nanometer particles, as well as their functionalization and other surface treatments to allow them to a practical use. Several industrial applications of such nanometer particles are also covered in this Handbook. It is a complete reference for those working with Nanotechnology at the lab level, from students to professionals.

Exposure Assessment and Safety Considerations for Working with Engineered Nanoparticles

Exposure Assessment and Safety Considerations for Working with Engineered Nanoparticles
by Michael J. Ellenbecker (Author), Candace Su-Jung Tsai (Author)


Addresses health and safety issues associated with workplace Nanoparticle exposures
• Describes methods to evaluate and control worker exposures to engineered nanoparticles
• Provides guidance for concerned EHS professionals on acceptable levels of exposure to nanoparticles
• Includes documentation on best practices to be followed by all researchers when working with engineered nanoparticles
• Describes current knowledge on toxicity of nanoparticles
• Includes coverage on Routes of Exposure for Engineered Nanoparticles

Optical Properties of Metallic Nanoparticles: Basic Principles and Simulation (Springer Series in Materials Science)

Optical Properties of Metallic Nanoparticles: Basic Principles and Simulation (Springer Series in Materials Science)
by Andreas Trügler (Author)


This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter...

© 2016 BrightSurf.com