Science Current Events | Science News |

Analyzing energy potential

May 07, 2012

Sensors, radio transmitters and GPS modules all feature low power consumption. All it takes is a few milliwatts to run them. Energy from the environment - from sources such as light or vibrations - may be enough to meet these requirements. A new measurement device can determine whether or not the energy potential is high enough.

The freight train races through the landscape at high speed, the train cars clattering along the tracks. The cars are rudely shaken, back and forth. The rougher the tracks, the more severe the shaking. This vibration delivers enough energy to charge small electronic equipment: this is how the sensors that monitor temperatures in refrigerator cars, or GPS receivers, can receive the current they need to run.

Vibration replaces batteries

Experts refer to this underlying technology as "energy harvesting", where energy is derived from everyday sources such as temperature or pressure differences, air currents, mechanical movements or vibrations. But is this really enough to supply electronic microsystems? The answer is provided by a data logger that is also installed on board, a product by the Fraunhofer Institute for Integrated Circuits. This compact system analyzes and characterizes the potential of usable energy - in this case, the oscillations created during the ride. It measures key parameters of the source of the vibrations, such as the amplitude and the frequency spectrum of acceleration. "We can use the data collected to design vibration converters, such as the piezoelectric generators, to feed the sensors, radio transmission receivers, tracking systems and other low-power-consuming devices with enough energy to power them," explains the IIS group manager and engineer, Dr. Peter Spies. "The tracking systems in use to date run on just a battery. These batteries need constant replacement, but that involves a lot of effort and expense. Thanks to energy harvesting, we can replace the batteries and wiring." Logistics processes are not the only candidates, however. The energy "harvested" can be used for a great many other applications as well - to charge heart-rate monitors, sensors in washing machines and production plants, or measurement systems in cars to measure the air pressure in tires.

The elements of the data logger include an acceleration sensor, a GPS module, a micro-controller, an SD card and a WiFi interface. The sensor measures the freight train's acceleration along three axes. At the same time, the GPS module determines the vehicle's position and stores the data along with the acceleration values on the SD card. These parameters can be used to pinpoint the train's speed and the amount of energy available to it. "That way, we can fine-tune the energy converter and tailor it to the application involved," the researcher adds.

The data logger is already in use in freight cars, trucks and machinery. Spies and his team are currently working to develop a complete tracking system that includes not only a GSM module and a GPS receiver but also a vibration converter that turns mechanical energy into electrical energy. The researchers are showcasing a prototype of the IIS data logger at the Sensor+Test 2012 trade fair, May 22-24 in Nuremberg, in Hall 12, Booth 202.


Related Sensors Current Events and Sensors News Articles

Mini-intestine grown in a test tube for nutritional research
Research efforts on the intestine have increased in recent years. Owing to its enormous surface area - comparable to that of a one-bedroom apartment - and the huge number of neurons it contains - comparable to that in the brain - the intestine is sometimes referred to as the abdominal brain.

Strange quantum phenomenon achieved at room temperature in semiconductor wafers
Entanglement is one of the strangest phenomena predicted by quantum mechanics, the theory that underlies most of modern physics. It says that two particles can be so inextricably connected that the state of one particle can instantly influence the state of the other, no matter how far apart they are.

New detector perfect for asteroid mining, planetary research
The grizzled asteroid miner is a stock character in science fiction. Now, a couple of recent events - one legal and the other technological - have brought asteroid mining a step closer to reality.

New urban heat island study shows surprising variation in air temperatures across Twin Cities
Some parts of the Twin Cities can spike temperatures up to 9°F higher than surrounding communities thanks to the "urban heat island" effect, according to a new study from the University of Minnesota.

A simple, rapid test to help ensure safer meat
Deciding whether to cook or toss a steak that's been in the fridge for a few days calls for a sniff test. This generally works well for home cooks.

Marine animals use new form of secret light communication
Researchers from the Queensland Brain Institute at The University of Queensland have uncovered a new form of secret light communication used by marine animals.

Nanotech-based sensor developed to measure microRNAs in blood, speed cancer detection
A simple, ultrasensitive microRNA sensor developed and tested by researchers from the schools of science and medicine at Indiana University-Purdue University Indianapolis and the Indiana University Melvin and Bren Simon Cancer Center holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.

Pioneering research boosts graphene revolution
Pioneering new research by the University of Exeter could pave the way for miniaturised optical circuits and increased internet speeds, by helping accelerate the 'graphene revolution'.

Researchers design and patent graphene biosensors
Graphene is the first truly two-dimensional crystal, which was obtained experimentally and investigated regarding its unique chemical and physical properties.

Highly sensitive sensors successfully map electrical patterns of embryonic heart
Highly sensitive sensors have been successfully used to map the electrical activity of the developing heart in embryos, in a University of Sussex study published today.
More Sensors Current Events and Sensors News Articles

© 2015