Science Current Events | Science News | Brightsurf.com
 

Analyzing energy potential

May 07, 2012
Sensors, radio transmitters and GPS modules all feature low power consumption. All it takes is a few milliwatts to run them. Energy from the environment - from sources such as light or vibrations - may be enough to meet these requirements. A new measurement device can determine whether or not the energy potential is high enough.

The freight train races through the landscape at high speed, the train cars clattering along the tracks. The cars are rudely shaken, back and forth. The rougher the tracks, the more severe the shaking. This vibration delivers enough energy to charge small electronic equipment: this is how the sensors that monitor temperatures in refrigerator cars, or GPS receivers, can receive the current they need to run.

Vibration replaces batteries

Experts refer to this underlying technology as "energy harvesting", where energy is derived from everyday sources such as temperature or pressure differences, air currents, mechanical movements or vibrations. But is this really enough to supply electronic microsystems? The answer is provided by a data logger that is also installed on board, a product by the Fraunhofer Institute for Integrated Circuits. This compact system analyzes and characterizes the potential of usable energy - in this case, the oscillations created during the ride. It measures key parameters of the source of the vibrations, such as the amplitude and the frequency spectrum of acceleration. "We can use the data collected to design vibration converters, such as the piezoelectric generators, to feed the sensors, radio transmission receivers, tracking systems and other low-power-consuming devices with enough energy to power them," explains the IIS group manager and engineer, Dr. Peter Spies. "The tracking systems in use to date run on just a battery. These batteries need constant replacement, but that involves a lot of effort and expense. Thanks to energy harvesting, we can replace the batteries and wiring." Logistics processes are not the only candidates, however. The energy "harvested" can be used for a great many other applications as well - to charge heart-rate monitors, sensors in washing machines and production plants, or measurement systems in cars to measure the air pressure in tires.

The elements of the data logger include an acceleration sensor, a GPS module, a micro-controller, an SD card and a WiFi interface. The sensor measures the freight train's acceleration along three axes. At the same time, the GPS module determines the vehicle's position and stores the data along with the acceleration values on the SD card. These parameters can be used to pinpoint the train's speed and the amount of energy available to it. "That way, we can fine-tune the energy converter and tailor it to the application involved," the researcher adds.

The data logger is already in use in freight cars, trucks and machinery. Spies and his team are currently working to develop a complete tracking system that includes not only a GSM module and a GPS receiver but also a vibration converter that turns mechanical energy into electrical energy. The researchers are showcasing a prototype of the IIS data logger at the Sensor+Test 2012 trade fair, May 22-24 in Nuremberg, in Hall 12, Booth 202.

Fraunhofer-Gesellschaft


Related Sensors Current Events and Sensors News Articles


Precise and programmable biological circuits
A team led by ETH Professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

Synthetic biology on ordinary paper, results off the page
New achievements in synthetic biology announced today by researchers at the Wyss Institute for Biologically Inspired Engineering, which will allow complex cellular recognition reactions to proceed outside of living cells, will dare scientists to dream big: there could one day be inexpensive, shippable and accurate test kits that use saliva or a drop of blood to identify specific disease or infection - a feat that could be accomplished anywhere in the world, within minutes and without laboratory support, just by using a pocket-sized paper diagnostic tool.

Bodies at sea - ocean oxygen levels may impact scavenger response
An ocean's oxygen levels may play a role in the impact of marine predators on bodies when they are immersed in the sea, according to Simon Fraser University researchers in a new study published this week in the journal PLoS One.

When the isthmus is an island: Madison's hottest, and coldest, spots
As Dane County begins the long slide into winter and the days become frostier this fall, three spots stake their claim as the chilliest in the area.

Tarantula Toxin is Used to Report on Electrical Activity in Live Cells
Crucial experiments to develop a novel probe of cellular electrical activity were conducted in the Neurobiology course at the Marine Biological Laboratory (MBL) in 2013. Today, that optical probe, which combines a tarantula toxin with a fluorescent compound, is introduced in a paper in the Proceedings of the National Academy of Sciences.

Imaging electric charge propagating along microbial nanowires
The claim by UMass Amherst researchers that the microbe Geobacter produces tiny electrical wires has been mired in controversy for a decade, but a new collaborative study provides stronger evidence than ever to support their claims.

Simple test may predict surgical wound healing complications
As many as 35 percent of patients who undergo surgery to remove soft tissue sarcomas experience wound-healing complications, due to radiation they receive before surgery.

First Detailed Map of Aboveground Forest Carbon Stocks in Mexico Unveiled
The Woods Hole Research Center (WHRC) and Allianza MREDD+ released the first detailed map of aboveground forest carbon stocks of Mexico available for download today.

Researchers develop world's thinnest electric generator
Researchers from Columbia Engineering and the Georgia Institute of Technology report today that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.

Magnetic mirrors enable new technologies by reflecting light in uncanny ways
As in Alice's journey through the looking-glass to Wonderland, mirrors in the real world can sometimes behave in surprising and unexpected ways, including a new class of mirror that works like no other.
More Sensors Current Events and Sensors News Articles

Make: Sensors: A Hands-On Primer for Monitoring the Real World with Arduino and Raspberry Pi

Make: Sensors: A Hands-On Primer for Monitoring the Real World with Arduino and Raspberry Pi
by Tero Karvinen (Author), Kimmo Karvinen (Author), Ville Valtokari (Author)


Make: Sensors is the definitive introduction and guide to the sometimes-tricky world of using sensors to monitor the physical world. With dozens of projects and experiments for you to build, this book shows you how to build sensor projects with both Arduino and Raspberry Pi. Use Arduino when you need a low-power, low-complexity brain for your sensor, and choose Raspberry Pi when you need to perform additional processing using the Linux operating system running on that device.You'll learn about touch sensors, light sensors, accelerometers, gyroscopes, magnetic sensors, as well as temperature, humidity, and gas sensors.

Getting Started with Sensors: Measure the World with Electronics, Arduino, and Raspberry Pi

Getting Started with Sensors: Measure the World with Electronics, Arduino, and Raspberry Pi
by Kimmo Karvinen (Author), Tero Karvinen (Author)


To build electronic projects that can sense the physical world, you need to build circuits based around sensors: electronic components that react to physical phenomena by sending an electrical signal. Even with only basic electronic components, you can build useful and educational sensor projects.

But if you incorporate Arduino or Raspberry Pi into your project, you can build much more sophisticated projects that can react in interesting ways and even connect to the Internet. This book starts by teaching you the basic electronic circuits to read and react to a sensor. It then goes on to show how to use Arduino to develop sensor systems, and wraps up by teaching you how to build sensor projects with the Linux-powered Raspberry Pi.

Sensor Technologies: Healthcare, Wellness and Environmental Applications (Expert's Voice in Networked Technologies)

Sensor Technologies: Healthcare, Wellness and Environmental Applications (Expert's Voice in Networked Technologies)
by Michael J. McGrath (Author), Cliodhna Ni Scanaill (Author)


Sensor Technologies: Healthcare, Wellness and Environmental Applications explores the key aspects of sensor technologies, covering wired, wireless, and discrete sensors for the specific application domains of healthcare, wellness and environmental sensing.  It discusses the social, regulatory, and design considerations specific to these domains. The book provides an application-based approach using real-world examples to illustrate the application of sensor technologies in a practical and experiential manner. The book  guides the reader from the formulation of the research question, through the design and validation process, to the deployment and management phase of sensor applications.  The processes and examples used in the book are primarily based on research carried out by...

Handbook of Modern Sensors: Physics, Designs, and Applications

Handbook of Modern Sensors: Physics, Designs, and Applications
by Jacob Fraden (Author)


Since publication of the previous, the 3rd edition of this book, the sensor tech- logies have made a remarkable leap ahead. The sensitivity of the sensors became higher, the dimensions – smaller, the selectivity – better, and the prices – lower. What have not changed, are the fundamental principles of the sensor design. They still are governed by the laws of Nature. Arguably one of the greatest geniuses ever lived, Leonardo Da Vinci had his own peculiar way of praying. It went like this, “Oh Lord, thanks for Thou don’t violate Thy own laws. ” It is comforting indeed that the laws of Nature do not change with time, it is just that our appreciation of them becomes re?ned. Thus, this new edition examines the same good old laws of Nature that form the foundation for designs of...

Beginning Sensor Networks with Arduino and Raspberry Pi (Technology in Action)

Beginning Sensor Networks with Arduino and Raspberry Pi (Technology in Action)
by Charles Bell (Author)


Beginning Sensor Networks with Arduino and Raspberry Pi teaches you how to build sensor networks with Arduino, Raspberry Pi, and XBee radio modules, and even shows you how to turn your Raspberry Pi into a MySQL database server to store your sensor data! First you'll learn about the different types of sensors and sensor networks, including how to build a simple XBee network. Then you'll walk through building an Arduino-based temperature sensor and data collector, followed by building a Raspberry Pi-based sensor node. Next you'll learn different ways to store sensor data, including writing to an SD card, sending data to the cloud, and setting up a Raspberry Pi MySQL server to host your data. You even learn how to connect to and interact with a MySQL database server directly from an...

Electronic Sensor Circuits & Projects, Volume III (Engineer's Mini Notebook)

Electronic Sensor Circuits & Projects, Volume III (Engineer's Mini Notebook)
by Forrest M. Mims III (Author)


Electronic sensor circuits convert light, temperature, sound, and other signals into a form that can be processed by electronic circuits. Learn about solar cells, photoresistors, thermistors, and magnet switches. Then build circuits that respond to heat, pressure, light, and more. This Engineer's Mini Notebook is a compilation of three of Forrest Mims's notebooks: Sensor Projects; Solar Cell Projects; and Magnet & Magnet Sensor Projects.

Make: Wearable Electronics: Design, prototype, and wear your own interactive garments

Make: Wearable Electronics: Design, prototype, and wear your own interactive garments
by Kate Hartman (Author)


What if your clothing could change color to complement your skin tone, respond to your racing heartbeat, or connect you with a loved one from afar? Welcome to the world of shoes that can dynamically shift your height, jackets that display when the next bus is coming, and neckties that can nudge your business partner from across the room. Whether it be for fashion, function, or human connectedness, wearable electronics can be used to design interactive systems that are intimate and engaging. Make: Wearable Electronics is intended for those with an interest in physical computing who are looking to create interfaces or systems that live on the body. Perfect for makers new to wearable tech, this book introduces you to the tools, materials, and techniques for creating interactive electronic...

Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing

Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing
by Robert Faludi (Author)


Get ready to create distributed sensor systems and intelligent interactive devices using the ZigBee wireless networking protocol and Series 2 XBee radios. By the time you're halfway through this fast-paced, hands-on guide, you'll have built a series of useful projects, including a complete ZigBee wireless network that delivers remotely sensed data.Radio networking is creating revolutions in volcano monitoring, performance art, clean energy, and consumer electronics. As you follow the examples in each chapter, you'll learn how to tackle inspiring projects of your own. This practical guide is ideal for inventors, hackers, crafters, students, hobbyists, and scientists.Investigate an assortment of practical and intriguing project ideasPrep your ZigBee toolbox with an extensive shopping list...

Sensors: An Introductory Course

Sensors: An Introductory Course
by Kourosh Kalantar-zadeh (Author)


Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed.

Chemical Sensors and Biosensors: Fundamentals and Applications

Chemical Sensors and Biosensors: Fundamentals and Applications
by Florinel-Gabriel Banica (Author)


This is a modern introductory book on sensors, combining underlying theory with bang up to date topics such as nanotechnology. The text is suitable for graduate students and research scientists with little background in analytical chemistry. It is user-friendly, with an accessible theoretical approach of the basic principles, and references for further reading. The book covers up-to-date advances in the sensor field, e.g. nanotechnology and quantum dots. It includes calculation exercises and solutions, and the  accompanying website contains Powerpoint slides.

© 2014 BrightSurf.com