Science Current Events | Science News | Brightsurf.com
 

Analyzing energy potential

May 07, 2012
Sensors, radio transmitters and GPS modules all feature low power consumption. All it takes is a few milliwatts to run them. Energy from the environment - from sources such as light or vibrations - may be enough to meet these requirements. A new measurement device can determine whether or not the energy potential is high enough.

The freight train races through the landscape at high speed, the train cars clattering along the tracks. The cars are rudely shaken, back and forth. The rougher the tracks, the more severe the shaking. This vibration delivers enough energy to charge small electronic equipment: this is how the sensors that monitor temperatures in refrigerator cars, or GPS receivers, can receive the current they need to run.

Vibration replaces batteries

Experts refer to this underlying technology as "energy harvesting", where energy is derived from everyday sources such as temperature or pressure differences, air currents, mechanical movements or vibrations. But is this really enough to supply electronic microsystems? The answer is provided by a data logger that is also installed on board, a product by the Fraunhofer Institute for Integrated Circuits. This compact system analyzes and characterizes the potential of usable energy - in this case, the oscillations created during the ride. It measures key parameters of the source of the vibrations, such as the amplitude and the frequency spectrum of acceleration. "We can use the data collected to design vibration converters, such as the piezoelectric generators, to feed the sensors, radio transmission receivers, tracking systems and other low-power-consuming devices with enough energy to power them," explains the IIS group manager and engineer, Dr. Peter Spies. "The tracking systems in use to date run on just a battery. These batteries need constant replacement, but that involves a lot of effort and expense. Thanks to energy harvesting, we can replace the batteries and wiring." Logistics processes are not the only candidates, however. The energy "harvested" can be used for a great many other applications as well - to charge heart-rate monitors, sensors in washing machines and production plants, or measurement systems in cars to measure the air pressure in tires.

The elements of the data logger include an acceleration sensor, a GPS module, a micro-controller, an SD card and a WiFi interface. The sensor measures the freight train's acceleration along three axes. At the same time, the GPS module determines the vehicle's position and stores the data along with the acceleration values on the SD card. These parameters can be used to pinpoint the train's speed and the amount of energy available to it. "That way, we can fine-tune the energy converter and tailor it to the application involved," the researcher adds.

The data logger is already in use in freight cars, trucks and machinery. Spies and his team are currently working to develop a complete tracking system that includes not only a GSM module and a GPS receiver but also a vibration converter that turns mechanical energy into electrical energy. The researchers are showcasing a prototype of the IIS data logger at the Sensor+Test 2012 trade fair, May 22-24 in Nuremberg, in Hall 12, Booth 202.

Fraunhofer-Gesellschaft


Related Sensors Current Events and Sensors News Articles


The dissemination of staph infections in hospitals
Wireless sensors recording human interactions explain the transmission of germs, such as MRSA, in hospitals, according to research by Thomas Obadia and colleagues.

Robotic materials: Changing with the world around them
Prosthetics with a realistic sense of touch. Bridges that detect and repair their own damage. Vehicles with camouflaging capabilities.

Thinking of drinking and driving? What if your car won't let you?
If every new car made in the United States had a built-in blood alcohol level tester that prevented impaired drivers from driving the vehicle, how many lives could be saved, injuries prevented, and injury-related dollars left unspent?

Superfast computers a step closer as a silicon chip's quantum capabilities are improved
The team demonstrated a quantum on/off switching time of about a millionth of a millionth of a second - the fastest-ever quantum switch to be achieved with silicon and over a thousand times faster than previous attempts.

Moral decisions can be influenced by eye tracking
Our opinions are affected by what our eyes are focusing on in the same instant we make moral decisions. Researchers at Lund University and other institutions have managed to influence people's responses to questions such as "is murder defensible?" by tracking their eye movements.

New research suggests insect wings might serve gyroscopic function
Gyroscopes measure rotation in everyday technologies, from unmanned aerial vehicles to cell phone screen stabilizers.

Click! That's how modern chemistry bonds nanoparticles to a substrate
Nanoparticles of various types can be quickly and permanently bonded to a solid substrate, if one of the most effective methods of synthesis, click chemistry, is used for this purpose.

'Additive manufacturing' could greatly improve diabetes management
Engineers at Oregon State University have used "additive manufacturing" to create an improved type of glucose sensor for patients with Type 1diabetes, part of a system that should work better, cost less and be more comfortable for the patient.

Nanospheres cooled with light to explore the limits of quantum physics
A team of scientists at UCL led by Peter Barker and Tania Monteiro (UCL Physics and Astronomy) has developed a new technology which could one day create quantum phenomena in objects far larger than any achieved so far.

Study: Erectile dysfunction drug relieves nerve damage in diabetic mice
New animal studies at Henry Ford Hospital found that sildenafil, a drug commonly used to treat erectile dysfunction, may be effective in relieving painful and potentially life-threatening nerve damage in men with long-term diabetes.
More Sensors Current Events and Sensors News Articles

Make: Sensors: A Hands-On Primer for Monitoring the Real World with Arduino and Raspberry Pi

Make: Sensors: A Hands-On Primer for Monitoring the Real World with Arduino and Raspberry Pi
by Tero Karvinen (Author), Kimmo Karvinen (Author), Ville Valtokari (Author)


Make: Sensors is the definitive introduction and guide to the sometimes-tricky world of using sensors to monitor the physical world. With dozens of projects and experiments for you to build, this book shows you how to build sensor projects with both Arduino and Raspberry Pi. Use Arduino when you need a low-power, low-complexity brain for your sensor, and choose Raspberry Pi when you need to perform additional processing using the Linux operating system running on that device.You'll learn about touch sensors, light sensors, accelerometers, gyroscopes, magnetic sensors, as well as temperature, humidity, and gas sensors.

Handbook of Modern Sensors: Physics, Designs, and Applications

Handbook of Modern Sensors: Physics, Designs, and Applications
by Jacob Fraden (Author)


Since publication of the previous, the 3rd edition of this book, the sensor tech- logies have made a remarkable leap ahead. The sensitivity of the sensors became higher, the dimensions – smaller, the selectivity – better, and the prices – lower. What have not changed, are the fundamental principles of the sensor design. They still are governed by the laws of Nature. Arguably one of the greatest geniuses ever lived, Leonardo Da Vinci had his own peculiar way of praying. It went like this, “Oh Lord, thanks for Thou don’t violate Thy own laws. ” It is comforting indeed that the laws of Nature do not change with time, it is just that our appreciation of them becomes re?ned. Thus, this new edition examines the same good old laws of Nature that form the foundation for designs of...

Sensor Technologies: Healthcare, Wellness and Environmental Applications (Expert's Voice in Networked Technologies)

Sensor Technologies: Healthcare, Wellness and Environmental Applications (Expert's Voice in Networked Technologies)
by Michael J. McGrath (Author), Cliodhna Ni Scanaill (Author)


Sensor Technologies: Healthcare, Wellness and Environmental Applications explores the key aspects of sensor technologies, covering wired, wireless, and discrete sensors for the specific application domains of healthcare, wellness and environmental sensing.  It discusses the social, regulatory, and design considerations specific to these domains. The book provides an application-based approach using real-world examples to illustrate the application of sensor technologies in a practical and experiential manner. The book  guides the reader from the formulation of the research question, through the design and validation process, to the deployment and management phase of sensor applications.  The processes and examples used in the book are primarily based on research carried out by...

Electronic Sensor Circuits & Projects, Volume III (Engineer's Mini Notebook)

Electronic Sensor Circuits & Projects, Volume III (Engineer's Mini Notebook)
by Forrest M. Mims III (Author)


Electronic sensor circuits convert light, temperature, sound, and other signals into a form that can be processed by electronic circuits. Learn about solar cells, photoresistors, thermistors, and magnet switches. Then build circuits that respond to heat, pressure, light, and more. This Engineer's Mini Notebook is a compilation of three of Forrest Mims's notebooks: Sensor Projects; Solar Cell Projects; and Magnet & Magnet Sensor Projects.

Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing

Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing
by Robert Faludi (Author)


Get ready to create distributed sensor systems and intelligent interactive devices using the ZigBee wireless networking protocol and Series 2 XBee radios. By the time you're halfway through this fast-paced, hands-on guide, you'll have built a series of useful projects, including a complete ZigBee wireless network that delivers remotely sensed data.Radio networking is creating revolutions in volcano monitoring, performance art, clean energy, and consumer electronics. As you follow the examples in each chapter, you'll learn how to tackle inspiring projects of your own. This practical guide is ideal for inventors, hackers, crafters, students, hobbyists, and scientists.Investigate an assortment of practical and intriguing project ideasPrep your ZigBee toolbox with an extensive shopping list...

Make: More Electronics: Journey Deep Into the World of Logic Chips, Amplifiers, Sensors, and Randomicity

Make: More Electronics: Journey Deep Into the World of Logic Chips, Amplifiers, Sensors, and Randomicity
by Charles Platt (Author)


Want to learn even more about electronics in a fun, hands-on way? If you finished the projects in Make: Electronics, or if you're already familiar with the material in that book, you're ready for Make: More Electronics. Right away, you'll start working on real projects, and you'll explore all the key components and essential principles through the book's collection of experiments. You'll build the circuits first, then learn the theory behind them!

This book picks up where Make: Electronics left off: you'll work with components like comparators, light sensors, higher-level logic chips, multiplexers, shift registers, encoders, decoders, and magnetic sensors. You'll also learn about topics like audio amplification, randomicity, as well as positive and negative feedback. With...

Wearable Sensors: Fundamentals, Implementation and Applications

Wearable Sensors: Fundamentals, Implementation and Applications
by Edward Sazonov (Editor), Michael R Neuman (Editor)


Written by industry experts, this book aims to provide you with an understanding of how to design and work with wearable sensors. Together these insights provide the first single source of information on wearable sensors that would be a valuable addition to the library of any engineer interested in this field. Wearable Sensors covers a wide variety of topics associated with the development and application of various wearable sensors. It also provides an overview and coherent summary of many aspects of current wearable sensor technology. Both industry professionals and academic researchers will benefit from this comprehensive reference which contains the most up-to-date information on the advancement of lightweight hardware, energy harvesting, signal processing, and wireless...

Make: Getting Started with Sensors: Measure the World with Electronics, Arduino, and Raspberry Pi

Make: Getting Started with Sensors: Measure the World with Electronics, Arduino, and Raspberry Pi
by Kimmo Karvinen (Author), Tero Karvinen (Author)


To build electronic projects that can sense the physical world, you need to build circuits based around sensors: electronic components that react to physical phenomena by sending an electrical signal. Even with only basic electronic components, you can build useful and educational sensor projects.

But if you incorporate Arduino or Raspberry Pi into your project, you can build much more sophisticated projects that can react in interesting ways and even connect to the Internet. This book starts by teaching you the basic electronic circuits to read and react to a sensor. It then goes on to show how to use Arduino to develop sensor systems, and wraps up by teaching you how to build sensor projects with the Linux-powered Raspberry Pi.

Handbook of Modern Sensors: Physics, Designs, and Applications

Handbook of Modern Sensors: Physics, Designs, and Applications
by Jacob Fraden (Author)


Since publication of the previous, the 3rd edition of this book, the sensor tech- logies have made a remarkable leap ahead. The sensitivity of the sensors became higher, the dimensions – smaller, the selectivity – better, and the prices – lower. What have not changed, are the fundamental principles of the sensor design. They still are governed by the laws of Nature. Arguably one of the greatest geniuses ever lived, Leonardo Da Vinci had his own peculiar way of praying. It went like this, “Oh Lord, thanks for Thou don’t violate Thy own laws. ” It is comforting indeed that the laws of Nature do not change with time, it is just that our appreciation of them becomes re?ned. Thus, this new edition examines the same good old laws of Nature that form the foundation for designs of...

Sensors: An Introductory Course

Sensors: An Introductory Course
by Kourosh Kalantar-zadeh (Author)


Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed.

© 2015 BrightSurf.com