Science Current Events | Science News |

Analyzing energy potential

May 07, 2012

Sensors, radio transmitters and GPS modules all feature low power consumption. All it takes is a few milliwatts to run them. Energy from the environment - from sources such as light or vibrations - may be enough to meet these requirements. A new measurement device can determine whether or not the energy potential is high enough.

The freight train races through the landscape at high speed, the train cars clattering along the tracks. The cars are rudely shaken, back and forth. The rougher the tracks, the more severe the shaking. This vibration delivers enough energy to charge small electronic equipment: this is how the sensors that monitor temperatures in refrigerator cars, or GPS receivers, can receive the current they need to run.

Vibration replaces batteries

Experts refer to this underlying technology as "energy harvesting", where energy is derived from everyday sources such as temperature or pressure differences, air currents, mechanical movements or vibrations. But is this really enough to supply electronic microsystems? The answer is provided by a data logger that is also installed on board, a product by the Fraunhofer Institute for Integrated Circuits. This compact system analyzes and characterizes the potential of usable energy - in this case, the oscillations created during the ride. It measures key parameters of the source of the vibrations, such as the amplitude and the frequency spectrum of acceleration. "We can use the data collected to design vibration converters, such as the piezoelectric generators, to feed the sensors, radio transmission receivers, tracking systems and other low-power-consuming devices with enough energy to power them," explains the IIS group manager and engineer, Dr. Peter Spies. "The tracking systems in use to date run on just a battery. These batteries need constant replacement, but that involves a lot of effort and expense. Thanks to energy harvesting, we can replace the batteries and wiring." Logistics processes are not the only candidates, however. The energy "harvested" can be used for a great many other applications as well - to charge heart-rate monitors, sensors in washing machines and production plants, or measurement systems in cars to measure the air pressure in tires.

The elements of the data logger include an acceleration sensor, a GPS module, a micro-controller, an SD card and a WiFi interface. The sensor measures the freight train's acceleration along three axes. At the same time, the GPS module determines the vehicle's position and stores the data along with the acceleration values on the SD card. These parameters can be used to pinpoint the train's speed and the amount of energy available to it. "That way, we can fine-tune the energy converter and tailor it to the application involved," the researcher adds.

The data logger is already in use in freight cars, trucks and machinery. Spies and his team are currently working to develop a complete tracking system that includes not only a GSM module and a GPS receiver but also a vibration converter that turns mechanical energy into electrical energy. The researchers are showcasing a prototype of the IIS data logger at the Sensor+Test 2012 trade fair, May 22-24 in Nuremberg, in Hall 12, Booth 202.


Related Sensors Current Events and Sensors News Articles

Researchers create first 3-D mathematical model of uterine contractions
Although researchers have been seeking the origins of preterm birth for many years, the causes are still relatively unknown.

The next generation of carbon monoxide nanosensors
The detection of carbon monoxide (CO) in the air is a vital issue, as CO is a poisonous gas and an environmental pollutant. CO typically derives from the incomplete combustion of carbon-based fuels, such as cooking gas and gasoline; it has no odour, taste, or colour and hence it is difficult to detect.

Monitoring sun exposure with a portable paper sensor
Summer is around the corner -- time for cookouts and sunbathing. But too much sun can result in sunburn, which is the main cause of skin cancer.

Spring comes sooner to urban heat islands, with potential consequences for wildlife
With spring now fully sprung, a new study by University of Wisconsin-Madison researchers shows that buds burst earlier in dense urban areas than in their suburban and rural surroundings. This may be music to urban gardeners' ears, but that tune could be alarming to some native and migratory birds and bugs.

Early use of 'hurricane hunter' data improves hurricane intensity predictions
Data collected via airplane when a hurricane is developing can improve hurricane intensity predictions by up to 15 percent, according to Penn State researchers who have been working with the National Oceanic and Atmospheric Administration and the National Hurricane Center to put the new technique into practice.

Tiny wasp sniffs out, picks up 'good vibrations' to battle ash borer
With the emerald ash borer beetle devastating ash tree populations throughout the United States -- from locations as far north as Massachusetts and as far south as Louisiana -- solutions to help fight the insect are critical.

New technique controls autonomous vehicles on a dirt track
A Georgia Institute of Technology research team has devised a novel way to help keep a driverless vehicle under control as it maneuvers at the edge of its handling limits.

Dartmouth team creates new method to control quantum systems
Dartmouth College researchers have discovered a method to design faster pulses, offering a new way to accurately control quantum systems.

Hearing snap, crackle, pop may help heal your knee
You've injured your knee. A doctor straps a listening device to it, and the noises you hear coming out of it are cringe-worthy. "Crackle! Krglkrglkrgl! Snap!"

Scientists explain how the giant magnetoelectric effect occurs in bismuth ferrite
A team of scientists from the Moscow Institute of Physics and Technology (MIPT), the National Research University of Electronic Technology (MIET), and the Prokhorov General Physics Institute have proposed a theoretical model that explains the unexpectedly high values of the linear magnetoelectric effect in BiFeO3 (bismuth ferrite) that have been observed in a number of experiments.
More Sensors Current Events and Sensors News Articles

Make: Sensors: A Hands-On Primer for Monitoring the Real World with Arduino and Raspberry Pi

Make: Sensors: A Hands-On Primer for Monitoring the Real World with Arduino and Raspberry Pi
by Tero Karvinen (Author), Kimmo Karvinen (Author), Ville Valtokari (Author)

Make: Sensors is the definitive introduction and guide to the sometimes-tricky world of using sensors to monitor the physical world. With dozens of projects and experiments for you to build, this book shows you how to build sensor projects with both Arduino and Raspberry Pi. Use Arduino when you need a low-power, low-complexity brain for your sensor, and choose Raspberry Pi when you need to perform additional processing using the Linux operating system running on that device.You'll learn about touch sensors, light sensors, accelerometers, gyroscopes, magnetic sensors, as well as temperature, humidity, and gas sensors.

Encyclopedia of Electronic Components Volume 3: Sensors for Location, Presence, Proximity, Orientation, Oscillation, Force, Load, Human Input, Liquid ... Light, Heat, Sound, and Electricity

Encyclopedia of Electronic Components Volume 3: Sensors for Location, Presence, Proximity, Orientation, Oscillation, Force, Load, Human Input, Liquid ... Light, Heat, Sound, and Electricity
by Charles Platt (Author)

Want to know how to use an electronic component? This third book of a three-volume set includes key information on electronics parts for your projects--complete with photographs, schematics, and diagrams. You'll learn what each one does, how it works, why it's useful, and what variants exist. No matter how much you know about electronics, you'll find fascinating details you've never come across before.Perfect for teachers, hobbyists, engineers, and students of all ages, this reference puts reliable, fact-checked information right at your fingertips--whether you're refreshing your memory or exploring a component for the first time. Beginners will quickly grasp important concepts, and more experienced users will find the specific details their projects require.Volume 3 covers components for...

Sensors: An Introductory Course

Sensors: An Introductory Course
by Kourosh Kalantar-zadeh (Author)

Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed.

Handbook of Modern Sensors: Physics, Designs, and Applications

Handbook of Modern Sensors: Physics, Designs, and Applications
by Jacob Fraden (Author)

This book presents a comprehensive and up-to-date account of the theory (physical principles), design, and practical implementations of various sensors for scientific, industrial and consumer applications. This latest edition focuses on the sensing technologies driven by the expanding use of sensors in mobile devices. These new miniature sensors will be described, with an emphasis on smart sensors which have embedded processing systems. The chapter on chemical sensors has also been expanded to present the latest developments.Digital systems, however complex and intelligent they may be, must receive information from the outside world that is generally analog and not electrical. Sensors are interface devices between various physical values and the electronic circuits that "understand" only...

Electronic Sensor Circuits & Projects, Volume III (Engineer's Mini Notebook)

Electronic Sensor Circuits & Projects, Volume III (Engineer's Mini Notebook)
by Forrest M. Mims III (Author)

Electronic sensor circuits convert light, temperature, sound, and other signals into a form that can be processed by electronic circuits. Learn about solar cells, photoresistors, thermistors, and magnet switches. Then build circuits that respond to heat, pressure, light, and more. This Engineer's Mini Notebook is a compilation of three of Forrest Mims's notebooks: Sensor Projects; Solar Cell Projects; and Magnet & Magnet Sensor Projects.

Getting Started with Sensors: Measure the World with Electronics, Arduino, and Raspberry Pi

Getting Started with Sensors: Measure the World with Electronics, Arduino, and Raspberry Pi
by Kimmo Karvinen (Author), Tero Karvinen (Author)

To build electronic projects that can sense the physical world, you need to build circuits based around sensors: electronic components that react to physical phenomena by sending an electrical signal. Even with only basic electronic components, you can build useful and educational sensor projects.

But if you incorporate Arduino or Raspberry Pi into your project, you can build much more sophisticated projects that can react in interesting ways and even connect to the Internet. This book starts by teaching you the basic electronic circuits to read and react to a sensor. It then goes on to show how to use Arduino to develop sensor systems, and wraps up by teaching you how to build sensor projects with the Linux-powered Raspberry Pi.

Sensor Technologies: Healthcare, Wellness and Environmental Applications (Expert's Voice in Networked Technologies)

Sensor Technologies: Healthcare, Wellness and Environmental Applications (Expert's Voice in Networked Technologies)
by Michael J. McGrath (Author), Cliodhna Ni Scanaill (Author), Dawn Nafus (Author)

Sensor Technologies: Healthcare, Wellness and Environmental Applications explores the key aspects of sensor technologies, covering wired, wireless, and discrete sensors for the specific application domains of healthcare, wellness and environmental sensing.  It discusses the social, regulatory, and design considerations specific to these domains. The book provides an application-based approach using real-world examples to illustrate the application of sensor technologies in a practical and experiential manner. The book  guides the reader from the formulation of the research question, through the design and validation process, to the deployment and management phase of sensor applications.  The processes and examples used in the book are primarily based on research carried out by Intel...

Practical Electronics for Inventors, Fourth Edition

Practical Electronics for Inventors, Fourth Edition
by Paul Scherz (Author), Simon Monk (Author)

A Fully-Updated, No-Nonsense Guide to ElectronicsAdvance your electronics knowledge and gain the skills necessary to develop and construct your own functioning gadgets. Written by a pair of experienced engineers and dedicated hobbyists, Practical Electronics for Inventors, Fourth Edition, lays out the essentials and provides step-by-step instructions, schematics, and illustrations. Discover how to select the right components, design and build circuits, use microcontrollers and ICs, work with the latest software tools, and test and tweak your creations. This easy-to-follow book features new instruction on programmable logic, semiconductors, operational amplifiers, voltage regulators, power supplies, digital electronics, and more.
Practical Electronics for Inventors, Fourth...

Electronics Sensors for the Evil Genius: 54 Electrifying Projects

Electronics Sensors for the Evil Genius: 54 Electrifying Projects
by Thomas Petruzzellis (Author)

54 super-entertaining projects offer insights into the sights, sounds, and smells of nature Nature meets the Evil Genius via 54 fun, safe, and inexpensive projects that allow you to explore the fascinating and often mysterious world of natural phenomena using your own home-built sensors. Each project includes a list of materials, sources for parts, schematics, and lots of clear, well-illustrated instructions. Projects include: rain detector, air pressure sensor, cloud chamber, lightning detector, electronic gas sniffer, seismograph, radiation detector, and more

Sensor Technology Handbook

Sensor Technology Handbook
by Jon S. Wilson (Author)

Without sensors most electronic applications would not exist―they perform a vital function, namely providing an interface to the real world. The importance of sensors, however, contrasts with the limited information available on them. Today's smart sensors, wireless sensors, and microtechnologies are revolutionizing sensor design and applications. This volume is a comprehensive sensor reference guide to be used by engineers and scientists in industry, research, and academia to help with their sensor selection and system design. It is filled with hard-to-find information, contributed by noted engineers and companies working in the field today. The book offers guidance on selecting, specifying, and using the optimum sensor for any given application. The editor-in-chief, Jon Wilson, has...

© 2016