Science Current Events | Science News | Brightsurf.com
 

Looking for Earths by looking for Jupiters

May 08, 2012

Washington, D.C.- In the search for Earth-like planets, it is helpful to look for clues and patterns that can help scientist narrow down the types of systems where potentially habitable planets are likely to be discovered. New research from a team including Carnegie's Alan Boss narrows down the search for Earth-like planets near Jupiter-like planets. Their work indicates that the early post-formation movements of hot-Jupiter planets probably disrupt the formation of Earth-like planets.

Their work is published the week of May 7 by Proceedings of the National Academy of Sciences.

The team, led by Jason Steffen of the Fermilab Center for particle Astrophysics, used data from NASA's Kepler mission to look at so-called "hot Jupiter" planets-those roughly Jupiter-sized planets with orbital periods of about three days. If a Jupiter-like planet has been discovered by a slight dimming of brightness in the star it orbits as it passes between the star and Earth, it is then possible-within certain parameters-to determine whether the hot-Jupiter has any companion planets.

Of the 63 candidate hot Jupiter systems identified by Kepler, the research team did not find any evidence for nearby companion planets. There are several possible explanations. One is that there are no companion planets for any of these hot Jupiters. Another is that the companions are too small in either size or mass to be detected using these methods. Lastly it is possible that there are companion planets, but that the configuration of their orbits makes them undetectable using these methods.

However, when expanding the search to include systems with either Neptune-like planets (known as "hot Neptunes"), or "warm Jupiters" (Jupiter-sized planets with slightly larger orbits than hot Jupiters), the team found some potential companions. Of the 222 hot Neptunes, there were two with possible companions, and of the 31 warm Jupiters, there were three with possible companions.

"The implications of these findings are that systems with Earth-like planets formed differently than systems with hot Jupiters," Boss said. "Since we believe that hot Jupiters formed farther out, and then migrated inward toward their stars, the inward migration disrupted the formation of Earth-like planets. If our sun had a hot Jupiter, we would not be here."

###

Funding for the Kepler mission is provided by NASA's Science Mission Directorate. Support for some of the scientists was provided by NASA via the Kepler Participating Scientist program and Hubble Fellowship grants.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution


Related Planetary Science Current Events and Planetary Science News Articles


Consistency of Earth's magnetic field history surprises scientists
Earth's magnetic field is generated by the motion of liquid iron in the planet's core. This "geodynamo" occasionally reverses its polarity--the magnetic north and south poles swap places.

Increase in volcanic eruptions at the end of the ice age caused by melting ice caps and erosion
The combination of erosion and melting ice caps led to a massive increase in volcanic activity at the end of the last ice age, according to new research.

Caltech researchers find evidence of a real ninth planet
Caltech researchers have found evidence of a giant planet tracing a bizarre, highly elongated orbit in the outer solar system.

Rotational clock for stars needs recalibration
New work from a team of astronomers led by Carnegie's Jennifer van Saders indicates that one recently developed method for determining a star's age needs to be recalibrated for stars that are older than our Sun.

What kinds of stars form rocky planets?
As astronomers continue to find more and more planets around stars beyond our own Sun, they are trying to discover patterns and features that indicate what types of planets are likely to form around different kinds of stars. This will hopefully inform and make more efficient the ongoing planet hunting process, and also help us better understand our own Solar System's formation.

New detector perfect for asteroid mining, planetary research
The grizzled asteroid miner is a stock character in science fiction. Now, a couple of recent events - one legal and the other technological - have brought asteroid mining a step closer to reality.

Plant metabolic protein tailored for nighttime growth
Everyone who took high school biology learned that photosynthesis is the process by which plants, algae and select bacteria transform the Sun's energy into chemical energy during the daytime.

Microplate discovery dates birth of Himalayas
An international team of scientists has discovered the first oceanic microplate in the Indian Ocean--helping identify when the initial collision between India and Eurasia occurred, leading to the birth of the Himalayas.

Scientists map source of Northwest's next big quake
A large team of scientists has nearly completed the first map of the mantle under the tectonic plate that is colliding with the Pacific Northwest and putting Seattle, Portland and Vancouver at risk of the largest earthquakes and tsunamis in the world.

Structure revealed: Plant sugar transporter involved in carbon sequestration
Like humans, plants are surrounded by and closely associated with microbes. The majority of these microbes are beneficial, but some can cause devastating disease. Maintaining the balance between them is critical. Plants feed these microbes, and it's thought that they do so just enough to allow the good ones to grow and to prevent the bad ones from gaining strength.
More Planetary Science Current Events and Planetary Science News Articles

Planetary Sciences

Planetary Sciences
by Imke de Pater (Author), Jack J. Lissauer (Author)


An authoritative introduction for graduate students in the physical sciences, this award-winning textbook explains the wide variety of physical, chemical, and geological processes that govern the motions and properties of planets. This updated second edition has been revised and improved while maintaining its existing structure and organization. Many data tables and plots have been updated to account for the latest measurements. A new Appendix focuses on recent discoveries since the second edition was first published. These include results from Cassini, Kepler, MESSENGER, MRO, LRO, Dawn at Vesta, Curiosity, and others, as well as many ground-based observatories. With over 300 exercises to help students apply the concepts covered, this textbook is ideal for graduate courses in astronomy,...

Fundamental Planetary Science: Physics, Chemistry and Habitability

Fundamental Planetary Science: Physics, Chemistry and Habitability
by Jack J. Lissauer (Author), Imke de Pater (Author)


A quantitative introduction to the Solar System and planetary systems science for advanced undergraduate students, this engaging new textbook explains the wide variety of physical, chemical, and geological processes that govern the motions and properties of planets. The authors provide an overview of our current knowledge and discuss some of the unanswered questions at the forefront of research in planetary science and astrobiology today. They combine knowledge of the Solar System and the properties of extrasolar planets with astrophysical observations of ongoing star and planet formation, offering a comprehensive model for understanding the origin of planetary systems. The book concludes with an introduction to the fundamental properties of living organisms and the relationship that life...

Planetary Science: The Science of Planets around Stars, Second Edition

Planetary Science: The Science of Planets around Stars, Second Edition
by George H. A. Cole (Author), Michael M. Woolfson (Author)


Since the publication of the popular first edition, stellar and planetary scientists have produced numerous new observations, theories, and interpretations, including the "demotion" of our former ninth planet Pluto as a dwarf planet. Covering all of these new discoveries, Planetary Science: The Science of Planets around Stars, Second Edition explains the science associated with the planets, the stars they orbit, and the interactions between them. It examines the formation, evolution, and death of stars and the properties of the Sun that influence the planets of the Solar System. Along with more problems, this second edition adds new material and improves some analytical treatments. The book consists of two main components. For students unfamiliar with stellar properties or the overall...

Introduction to Planetary Science: The Geological Perspective

Introduction to Planetary Science: The Geological Perspective
by Gunter Faure (Author), Teresa M. Mensing (Author)


This textbook details basic principles of planetary science that help to unify the study of the solar system. It is organized in a hierarchical manner so that every chapter builds upon preceding ones. Starting with historical perspectives on space exploration and the development of the scientific method, the book leads the reader through the solar system. Coverage explains that the origin and subsequent evolution of planets and their satellites can be explained by applications of certain basic principles of physics, chemistry, and celestial mechanics and that surface features of the solid bodies can be interpreted by principles of geology.

Planetary Sciences

Planetary Sciences
by Imke de Pater (Author), Jack J. Lissauer (Author)


An authoritative introduction for graduate students in the physical sciences, this textbook explains the wide variety of physical, chemical, and geological processes that govern the motions and properties of planets. The second edition of this award-winning textbook has been substantially updated and improved. It now contains a reorganized discussion of small bodies, including a detailed description of the Kuiper belt and asteroid belt; a significantly expanded chapter on extrasolar planets and what they tell us about planetary systems; and appendixes providing a glossary of acronyms, tables of key spacecraft, a summary of observing techniques, and a sampling of very recent images. With over 300 exercises to help students apply the concepts covered, this textbook is ideal for courses in...

Planetary Science: The Science of Planets Around Stars

Planetary Science: The Science of Planets Around Stars
by George H. A. Cole (Author), Michael M. Woolfson (Author)


There are many planetary systems other than our own, but it is only through a detailed understanding of the relatively accessible bodies in our solar system that a thorough appreciation of planetary science can be gained. This is particularly pertinent with the recent discovery of extra-solar planets and the desire to understand their formation and the prospect of life on other worlds.

Planetary Science: The Science of Planets Around Stars focuses on the structure of planets and the stars they orbit and the interactions between them. The book is written in two parts, making it suitable for students at different levels and approaching planetary science from differing backgrounds. Twelve independent descriptive chapters reveal our solar system and the diverse bodies it contains,...

Planetary Geology: An Introduction (Second Edition)

Planetary Geology: An Introduction (Second Edition)
by Claudio Vita-Finzi (Author), Dominic Fortes (Author)


Recent planetary missions by NASA, the European Space Agency, and other national agencies have reaffirmed that the geological processes which are familiar from our studies of the Earth operate on many solid planets and satellites. Common threads link the internal structure, thermal evolution, and surface character of both rocky and icy worlds. Volcanoes, impact craters, ice caps, dunes, rift valleys, rivers, and oceans are features of extra-terrestrial worlds as diverse as Mercury and Titan. New data reveals that many of the supposedly inert planetary bodies were recently subject to earthquakes, landslides, and climate change, and that some of them display active volcanism. Moreover, our understanding of the very origins of the Solar System depends heavily on the composition of meteorites...

Planetary Climates (Princeton Primers in Climate)

Planetary Climates (Princeton Primers in Climate)
by Andrew Ingersoll (Author)



This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.


The Planetary Omnibus

The Planetary Omnibus
by Warren Ellis (Author)


PLANETARY has been hailed as a timeless story that turned modern superhero conventions on their heads.Written by Warren Ellis (TRANSMETROPOLITAN) and with stunning art by John Cassaday (Astonishing X-Men), this critically acclaimed, landmark series took a look at the inter-dimensional peace-keeping force known as Planetary. The trio on the ground includes Elijah Snow, a hundred-year-old man, Jakita Wagner, an extremely powerful woman, and The Drummer, a man with the ability to communicate with machines. Tasked with tracking down evidence of super-human activity, these mystery archaeologists uncover unknown paranormal secrets and histories, such as a World War II supercomputer that can access other universes, a ghostly spirit of vengeance, and a lost island of dying monsters.

All 27...

Planetary Surface Processes (Cambridge Planetary Science)

Planetary Surface Processes (Cambridge Planetary Science)
by H. Jay Melosh (Author)


Planetary Surface Processes is the first advanced textbook to cover the full range of geologic processes that shape the surfaces of planetary-scale bodies. Using a modern, quantitative approach, this book reconsiders geologic processes outside the traditional terrestrial context. It highlights processes that are contingent upon Earth's unique circumstances and processes that are universal. For example, it shows explicitly that equations predicting the velocity of a river are dependent on gravity: traditional geomorphology textbooks fail to take this into account. This textbook is a one-stop source of information on planetary surface processes, providing readers with the necessary background to interpret new data from NASA, ESA and other space missions. Based on a course taught by the...

© 2016 BrightSurf.com