Science Current Events | Science News |

Honing in on supernova origins

May 08, 2012

Pasadena, CA-Type Ia supernovae are important stellar phenomena, used to measure the expansion of the universe. But astronomers know embarrassingly little about the stars they come from and how the explosions happen. New research from a team led by Harvard University and including Carnegie's Josh Simon, Chris Burns, Nidia Morrell, and Mark Phillips examined 23 Type Ia supernovae and helped identify the formation process for at least some of them. Their work will be published in The Astrophysical Journal and is available online.

Type Ia supernovae are violent stellar explosions. Observations of their brightness are used to determine distances in the universe and have shown scientists that the universe is expanding at an accelerating rate. The Nobel Prize in Physics was awarded December 10, 2011, to three astronomers for their "discovery of the accelerating expansion of the Universe through observations of distant supernovae."

Type Ia supernovae are believed to be thermonuclear explosions of a white dwarf star that's part of a binary system--two stars that are physically close together and orbit around a common center of mass. But there are two different possibilities for how Type Ia supernovae are created from this type of binary system.

In the so-called double-degenerate model, the orbit between two white dwarf stars gradually shrinks until the lighter star gets so close to its companion that it is ripped apart by tidal forces. Some of the lighter star's matter is then absorbed into the primary white dwarf, causing an explosion. In the competing single-degenerate model, the white dwarf slowly accretes mass from an ordinary, non-white dwarf star, until it reaches an ignition point.

"Previous studies have produced conflicting results. The conflict disappears if both types of explosion are happening," explained lead author Ryan Foley of the Harvard-Smithsonian Center for Astrophysics.

The research team studied 23 Type Ia supernovae to look for signatures of gas around the supernovae, which should be present only in single-degenerate systems. They found that the more powerful explosions tended to come from "gassy" systems, or systems with outflows of gas. However, only a fraction of supernovae show evidence for outflows--the remainder likely come from double-degenerate systems.

This finding has important implications for how astronomers use supernovae to measure the universe's expansion. "To maximize the accuracy of our measurements we may have to separate the two kinds of Type Ia supernovae," Simon said. "This study gives us one potential way to tell them apart."


Funding for this research was provided in part by a Clay Fellowship, the ISF, the Minerva foundations, an ARCHES award, the Lord Sieff of Brimpton Fund, a Minerva fellowship, CONICYT, the Millennium Center for Supernova Science, and the NSF

The HET is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universitat Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.

The Carnegie Institution for Science ( is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution

Related Supernova Current Events and Supernova News Articles

NASA's Fermi satellite detects first gamma-ray pulsar in another galaxy
Researchers using NASA's Fermi Gamma-ray Space Telescope have discovered the first gamma-ray pulsar in a galaxy other than our own. The object sets a new record for the most luminous gamma-ray pulsar known.

Ancient stars at the center of the galaxy contain 'fingerprints' from the early universe
An international team of astronomers, led researchers from the University of Cambridge and the Australian National University, have identified some of the oldest stars in our galaxy, which could contain vital clues about the early Universe, including an indication of how the first stars died.

The glowing halo of a zombie star
Led by Christopher Manser, a PhD student at the University of Warwick in the United Kingdom, the team used data from ESO's Very Large Telescope (VLT) and other observatories to study the shattered remains of an asteroid around a stellar remnant -- a white dwarf (called SDSS J1228+1040) [1].

NASA's Swift spots its thousandth gamma-ray burst
NASA's Swift spacecraft has detected its 1,000th gamma-ray burst (GRB). GRBs are the most powerful explosions in the universe, typically associated with the collapse of a massive star and the birth of a black hole.

Suzaku finds common chemical makeup at largest cosmic scales
A new survey of hot, X-ray-emitting gas in the Virgo galaxy cluster shows that the elements needed to make stars, planets and people were evenly distributed across millions of light-years early in cosmic history, more than 10 billion years ago.

How do atoms alter during a supernova explosion?
A research group from Osaka University, in collaboration with an international research team, successfully realized in laboratory the world of exotic atoms under extreme state through high - brightness X-ray sources, typically realized in supernova explosions.

Revisiting the Veil Nebula
Deriving its name from its delicate, draped filamentary structures, the beautiful Veil Nebula is one of the best-known supernova remnants.

Mystery of exploding stars yields to astrophysicists
A longstanding mystery about the tiny stars that let loose powerful explosions known as Type Ia supernovae might finally be solved.

Solar System formation don't mean a thing without that spin
New work from Carnegie's Alan Boss and Sandra Keiser provides surprising new details about the trigger that may have started the earliest phases of planet formation in our solar system.

Rogue supernovas likely flung into space by black hole slingshots
Rogue supernovas that explode all alone in deep space present an astronomical mystery. Where did they come from? How did they get there? The likely answer: a binary black hole slingshot, according to a new study by Ryan Foley, a professor of astronomy and physics at the University of Illinois.
More Supernova Current Events and Supernova News Articles

© 2015