Science Current Events | Science News |

UF astronomer: Some giant planets in other systems most likely to be alone

May 08, 2012
GAINESVILLE, Fla. - "Hot Jupiter-type" planets are most likely to be alone in their systems, according to research by a University of Florida astronomer and others, made public today.

"Hot Jupiters" are giant planets beyond our solar system, roughly the size of Jupiter but orbiting close to their parent stars and thus much hotter than the Earth or Jupiter, said UF professor Eric Ford. They have very short orbital periods, completing a turn around their stars in fewer than 10 days. This study, published in the journal Proceedings of the National Academy of Sciences, provides new insights into how they are formed.

This research used information gathered by NASA's planet-hunting Kepler mission, which uses a 1-meter space telescope to stare constantly at a patch of the Milky Way, registering the small decreases in the light from stars caused when a planet crosses in front of it.

Scientists dug into Kepler's data and selected a sample of 63 planetary systems containing previously detected hot Jupiter candidates. Then they looked for signals of additional planets either crossing in front of the host stars or gravitationally tugging on the hot Jupiter's orbit. In all cases they found no evidence of additional planets. To allow comparisons, they used the same methods to study a sample of "warm Jupiter" candidates, equally big planets but located farther away from their parent stars and "hot Neptunes," smaller but closer to the stars. They found compelling evidence that at least 10 percent of the warm Jupiters and one third of the hot Neptunes have other planetary companions nearby in the system. Thus, why are all the hot Jupiters so lonely?

Astronomers believe it results from the way the hot Jupiters are formed, now thought to be different from most other planets. Current models suggest that they are probably formed farther away from their host star, and then gravitational interactions with another body cause their orbits to become highly elongated. Each orbit the hot Jupiter passes very close to the host star and then travels far away. The star raises tides on the planet, repeatedly stretching it and causing its orbit to become smaller and more circular. This process would remove or destroy other low-mass planets that originally formed between the star and the giant planet.

"We looked for companion planets near hot Jupiters in order to learn a bit more about their formation," Ford said. "The lack of nearby planets supports the theory that a close encounter with another body in the system caused the elongation of the orbit. When a giant planet repeatedly passes through the inner regions of a planetary system on an elongated orbit, it would wreak great havoc on any planets that had formed there. The other planets would either fall into the star, collide with the hot Jupiter or be kicked out of the system via a gravitational slingshot."

In 1995 the first planet orbiting a sun-like star was discovered. It and most exoplanets found in the early days of the exoplanet search happened to be hot Jupiters.

"That was because they are easier to find than smaller planets or others more distant to their host star," Ford said. "Now, we know that less than 1 percent of stars harbor hot Jupiters, so they are relatively rare. A special sequence of events like strong gravitational interactions between two giant planets followed by tidal circularization seems to be the most plausible scenario for the formation of hot Jupiters."

The research was led by Jason Steffen from the Fermilab Center for Particle Astrophysics.

NASA's Kepler Mission, operating since 2009, is revolutionizing the field of planetary science. For the first time it is enabling astronomers to conduct this kind of detailed population studies of planet candidates. By allowing astronomers to study systems other than our own, they are able to confront planet formation theories with observational data, giving important insights into the range of contemporary planetary system architectures and the possible existence of habitable planets within them.

University of Florida

Related Giant Planets Current Events and Giant Planets News Articles

Record high pressure squeezes secrets out of osmium
An international team of scientists led by the University of Bayreuth and with participation of DESY has created the highest static pressure ever achieved in a lab: Using a special high pressure device, the researchers investigated the behaviour of the metal osmium at pressures of up to 770 Gigapascals (GPa) - more than twice the pressure in the inner core of the Earth, and about 130 Gigapascals higher than the previous world record set by members of the same team.

Astronomers discover 'young Jupiter' exoplanet
One of the best ways to learn how our solar system evolved is to look to younger star systems in the early stages of development.

Brown dwarfs, stars share formation process, new study indicates
Astronomers using the Karl G. Jansky Very Large Array (VLA) have discovered jets of material ejected by still-forming young brown dwarfs.

Observing the birth of a planet
Observing time at the European Southern Observatory (ESO) on Paranal Mountain is a very precious commodity - and yet the Very Large Telescope (VLT) in Chile spent an entire night with a high-resolution infrared camera pointed at a single object in the night sky.

Astronomers probe inner region of young star and its planets
Astronomers have probed deeper than before into a planetary system 130 light-years from Earth. The observations mark the first results of a new exoplanet survey called LEECH (LBT Exozodi Exoplanet Common Hunt), and are published today in the journal Astronomy and Astrophysics.

A second minor planet may possess Saturn-like rings
There are only five bodies in our solar system that are known to bear rings. The most obvious is the planet Saturn; to a lesser extent, rings of gas and dust also encircle Jupiter, Uranus, and Neptune.

Baby photos of a scaled-up solar system
Scientists at the University of Arizona have discovered what might be the closest thing to "baby photos" of our solar system.

Planet-forming lifeline discovered in a binary star system
A research group led by Anne Dutrey from the Laboratory of Astrophysics of Bordeaux, France, and the National Centre for Scientific Research (CNRS) observed the distribution of dust and gas in a binary star system called GG Tau-A.

Laser experiments mimic cosmic explosions and planetary cores
Researchers are finding ways to understand some of the mysteries of space without leaving earth.

Researchers Highlight Acousto-Optic Tunable Filter Technology for Balloon-Borne Platforms
Narrowband or hyperspectral imaging is a valuable technique used in planetary science for characterizing surfaces and surrounding environments.
More Giant Planets Current Events and Giant Planets News Articles

© 2015