Science Current Events | Science News |

Nanotube 'sponge' has potential in oil spill cleanup

May 11, 2012

A carbon nanotube sponge that can soak up oil in water with unparalleled efficiency has been developed with help from computational simulations performed at the Department of Energy's (DOE's) Oak Ridge National Laboratory.

Carbon nanotubes, which consist of atom-thick sheets of carbon rolled into cylinders, have captured scientific attention in recent decades because of their high strength, potential high conductivity and light weight. But producing nanotubes in bulk for specialized applications was often limited by difficulties in controlling the growth process as well as dispersing and sorting the produced nanotubes.

ORNL's Bobby Sumpter was part of a multi-institutional research team that set out to grow large clumps of nanotubes by selectively substituting boron atoms into the otherwise pure carbon lattice. Sumpter and Vincent Meunier, now of Rensselaer Polytechnic Institute, conducted simulations on supercomputers, including Jaguar at ORNL's Leadership Computing Facility, to understand how the addition of boron would affect the carbon nanotube structure.

"Any time you put a different atom inside the hexagonal carbon lattice, which is a chicken wire-like network, you disrupt that network because those atoms don't necessarily want to be part of the chicken wire structure," Sumpter said. "Boron has a different number of valence electrons, which results in curvature changes that trigger a different type of growth."

Simulations and lab experiments showed that the addition of boron atoms encouraged the formation of so-called "elbow" junctions that help the nanotubes grow into a 3-D network. The team's results are published in Nature Scientific Reports.

"Instead of a forest of straight tubes, you create an interconnected, woven sponge-like material," Sumpter said. "Because it is interconnected, it becomes three-dimensionally strong, instead of only one-dimensionally strong along the tube axis."

Further experiments showed the team's material, which is visible to the human eye, is extremely efficient at absorbing oil in contaminated seawater because it attracts oil and repels water.

"It loves carbon because it is primarily carbon," Sumpter said. "Depending on the density of oil to water content and the density of the sponge network, it will absorb up to 100 times its weight in oil."

The material's mechanical flexibility, magnetic properties, and strength lend it additional appeal as a potential technology to aid in oil spill cleanup, Sumpter says.

"You can reuse the material over and over again because it's so robust," he said. "Burning it does not substantially decrease its ability to absorb oil, and squeezing it like a sponge doesn't damage it either."

The material's magnetic properties, caused by the team's use of an iron catalyst during the nanotube growth process, means it can be easily controlled or removed with a magnet in an oil cleanup scenario. This ability is an improvement over existing substances used in oil removal, which are often left behind after cleanup and can degrade the environment.

The experimental team has submitted a patent application on the technology through Rice University. The research is published as "Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions," and is available online here:

The research team included researchers from ORNL, Rice University; Universidade de Vigo, Spain; Rensselaer Polytechnic Institute; University of Illinois at Urbana-Champaign; Instituto de Microelectronica de Madrid, Spain; Air Force Office of Scientific Research Laboratory; Arizona State University; Universite Catholique de Louvain, Belgium; The Pennsylvania State University; and Shinshu University, Japan.

The work was supported by the National Science Foundation, the U.S. Air Force Office of Scientific Research, the U.S. Army Research Laboratory, and by the DOE Office of Science through ORNL's Center for Nanophase Materials Sciences (CNMS) and the laboratory's Leadership Computing Facility.

CNMS is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Oak Ridge National Laboratory

Related Carbon Nanotube Current Events and Carbon Nanotube News Articles

Nature Photonics: Light source for quicker computer chips
Worldwide growing data volumes make conventional electronic processing reach its limits.

Unraveling truly one-dimensional carbon solids
Even in its elemental form, the high bond versatility of carbon allows for many different well-known materials, including diamond and graphite.

UTA researchers devise more efficient materials for solar fuel cells
University of Texas at Arlington chemists have developed new high-performing materials for cells that harness sunlight to split carbon dioxide and water into useable fuels like methanol and hydrogen gas.

Nano-coating makes coaxial cables lighter
Common coaxial cables could be made 50 percent lighter with a new nanotube-based outer conductor developed by Rice University scientists.

New process enables easier isolation of carbon nanotubes
Manufacture of longer, thinner, and uncontaminated carbon nanotubes, and successfully isolating them, have been ongoing challenges for researchers. A newly developed method has opened up new possibilities in carbon nanotube development.

Researchers develop nanoscale probes for ssDNA sustainability under UV radiation
DNA, which stores genetic information in the majority of organisms on Earth, is not easily destroyed. It readily absorbs ultraviolet (UV) radiation, but finds ways to recover.

Emerging technologies help advance the understanding, detection and control of epilepsy
A smartphone-induced EEG waveform and an intelligent algorithm for seizure detection are among the emerging technologies to be unveiled at the American Epilepsy Society's (AES) 69th Annual Meeting.

Making green fuels, no fossils required
Using solar or wind power to produce carbon-based fuels, which are commonly called fossil fuels, might seem like a self-defeating approach to making a greener world.

Realizing carbon nanotube integrated circuits
Individual transistors made from carbon nanotubes are faster and more energy efficient than those made from other materials. Going from a single transistor to an integrated circuit full of transistors, however, is a giant leap.

UT Dallas nanotechnology research leads to super-elastic conducting fibers
An international research team based at The University of Texas at Dallas has made electrically conducting fibers that can be reversibly stretched to over 14 times their initial length and whose electrical conductivity increases 200-fold when stretched.
More Carbon Nanotube Current Events and Carbon Nanotube News Articles

Carbon Nanotube Science: Synthesis, Properties and Applications

Carbon Nanotube Science: Synthesis, Properties and Applications
by Peter J. F. Harris (Author)

Carbon nanotubes represent one of the most exciting research areas in modern science. These molecular-scale carbon tubes are the stiffest and strongest fibres known, with remarkable electronic properties, and potential applications in a wide range of fields. Carbon Nanotube Science is the most concise, accessible book for the field, presenting the basic knowledge that graduates and researchers need to know. Based on the successful Carbon Nanotubes and Related Structures, this new book focuses solely on carbon nanotubes, covering the major advances made in recent years in this rapidly developing field. Chapters focus on electronic properties, chemical and bimolecular functionalisation, nanotube composites and nanotube-based probes and sensors. The book begins with a comprehensive...

Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Topics in Applied Physics)

Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Topics in Applied Physics)
by Mildred S. Dresselhaus (Editor), Gene Dresselhaus (Editor), Phaedon Avouris (Editor), R.E. Smalley (Editor)

After a short introduction and a brief review of the relation between carbon nanotubes, graphite and other forms of carbon, the synthesis techniques and growth mechanisms for carbon nanotubes are described. This is followed by reviews on nanotube electronic structure, electrical, optical, and mechanical properties, nanotube imaging and spectroscopy, and nanotube applications.

Carbon Nanotube Electronics (Integrated Circuits and Systems)

Carbon Nanotube Electronics (Integrated Circuits and Systems)
by Ali Javey (Editor), Jing Kong (Editor)

This book provides a complete overview of the field of carbon nanotube electronics. It covers materials and physical properties, synthesis and fabrication processes, devices and circuits, modeling, and finally novel applications of nanotube-based electronics. The book introduces fundamental device physics and circuit concepts of 1-D electronics. At the same time it provides specific examples of the state-of-the-art nanotube devices.

Carbon Nanotube Reinforced Composites: Metal and Ceramic Matrices

Carbon Nanotube Reinforced Composites: Metal and Ceramic Matrices
by Sie Chin Tjong (Author)

Providing a broad insight into the potential applications of carbon nanotubes with metals and ceramic materials as a matrix, this book focuses on the preparation and the microstructural, physical, and mechanical characterizations of such novel nanocomposites. It features information on current synthesis and structure-property-relationships of metals and ceramics reinforced with CNT, organizing the vast array of surveys scattered throughout the literature in a single monograph. With its laboratory protocols and data tables this is invaluable reading for research workers and academics, as well as for applied scientists and industry personnel.

Carbon Nanotube and Graphene Device Physics

Carbon Nanotube and Graphene Device Physics
by H.-S. Philip Wong (Author), Deji Akinwande (Author)

Explaining the properties and performance of practical nanotube devices and related applications, this is the first introductory textbook on the subject. All the fundamental concepts are introduced, so that readers without an advanced scientific background can follow all the major ideas and results. Additional topics covered include nanotube transistors and interconnects, and the basic physics of graphene. Problem sets at the end of every chapter allow readers to test their knowledge of the material covered and gain a greater understanding of the analytical skill sets developed in the text. This is an ideal textbook for senior undergraduate and graduate students taking courses in semiconductor device physics and nanoelectronics. It is also a perfect self-study guide for professional...

Carbon Nanotubes, Graphene and Related Nanostructures: Volume 1407 (MRS Proceedings)

Carbon Nanotubes, Graphene and Related Nanostructures: Volume 1407 (MRS Proceedings)
by Yoke Khin Yap (Editor)

Carbon nanotubes, graphene, and related nanostructures have attracted tremendous attentions for their unique structures and intriguing properties. These nanomaterials have been widely investigated, from theory, synthesis and characterization to applications in electronic devices, electron field emission displays, energy generation and storage, and biological and chemical sensors, etc. In addition, non-carbon nanostructures such as nanotubes and nanosheets of boron nitride (BN), boron-carbon nitride (BCN), have gained increasing interest. To facilitate scientific interaction among students and researchers on the latest advancement in this area, Symposium AA, "Carbon Nanotubes, Graphene and Related Nanostructures," was organized and held at the 2011 MRS Fall Meeting in Boston,...

Physical Properties of Carbon Nanotubes

Physical Properties of Carbon Nanotubes
by G Dresselhaus (Author), M S Dresselhaus (Author), Riichiro Saito (Author)

This is an introductory textbook for graduate students and researchers from various fields of science who wish to learn about carbon nanotubes. The field is still at an early stage, and progress continues at a rapid rate. This book focuses on the basic principles behind the physical properties and gives the background necessary to understand the recent developments. Some useful computational source codes which generate coordinates for carbon nanotubes are also included in the appendix.

Finding the Shape of Space - Future Space Situational Awareness (SSA) Technologies Preserving U.S. Military Freedom of Action in Space, Full Motion Video, Networks, Scramjet Access, Carbon Nanotubes

Finding the Shape of Space - Future Space Situational Awareness (SSA) Technologies Preserving U.S. Military Freedom of Action in Space, Full Motion Video, Networks, Scramjet Access, Carbon Nanotubes
by Progressive Management

This excellent report, professionally converted for accurate flowing-text e-book format reproduction, is concerned with the direction space technologies will take over the next 20-30 years. Specifically, this research takes a purposeful look at accelerating technological change as it relates to U.S. space capabilities instrumental to improving SSA and other key space initiatives.

The US National Space Policy specifically addresses the preservation of, and freedom of action in, space. In order for the policy to succeed, would-be attackers must believe that the United States will detect and attribute their actions. Today's space surveillance network cannot detect either the newest and smallest satellites, nor can it detect small particles of space debris. It therefore cannot...

Computational Physics of Carbon Nanotubes

Computational Physics of Carbon Nanotubes
by Hashem Rafii-Tabar (Author)

Carbon nanotubes are the fabric of nanotechnology. Investigation into their properties has become one of the most active fields of modern research. This book presents the key computational modelling and numerical simulation tools to investigate carbon nanotube characteristics. In particular, methods applied to geometry and bonding, mechanical, thermal, transport and storage properties are addressed. The first half describes classic statistical and quantum mechanical simulation techniques, (including molecular dynamics, Monte Carlo simulations and ab initio molecular dynamics), atomistic theory and continuum based methods. The second half discusses the application of these numerical simulation tools to emerging fields such as nanofluidics and nanomechanics. With selected experimental...

Nanotube Superfiber Materials: Chapter 18. A Review on the Design of Superstrong Carbon Nanotube or Graphene Fibers and Composites (Micro and Nano Technologies)

Nanotube Superfiber Materials: Chapter 18. A Review on the Design of Superstrong Carbon Nanotube or Graphene Fibers and Composites (Micro and Nano Technologies)
by William Andrew

In this chapter, the mechanics of nanotubes, graphene and related fibers are reviewed, with an eye to the limiting case of the design of a space elevator megacable. The effect on the fracture strength of thermodynamically unavoidable atomistic defects with different sizes and shapes is quantified. Brittle fracture is investigated both numerically (with ad hoc hierarchical simulations) and theoretically (with quantized fracture theories) for nanotubes, graphene and related bundles.

© 2016