Science Current Events | Science News | Brightsurf.com
 

Researchers create 'MRI' of the sun's interior motions

July 09, 2012

A team of scientists has created an "MRI" of the Sun's interior plasma motions, shedding light on how it transfers heat from its deep interior to its surface. The result, which appears in the journal the Proceedings of the National Academy of Sciences, upends our understanding of how heat is transported outwards by the Sun and challenges existing explanations of the formation of sunspots and magnetic field generation.

The work was conducted by researchers from NYU's Courant Institute of Mathematical Sciences and its Department of Physics, Princeton University, the Max Planck Institute, and NASA.

The Sun's heat, generated by nuclear fusion in its core, is transported to the surface by convection in the outer third. However, our understanding of this process is largely theoretical-the Sun is opaque, so convection cannot be directly observed. As a result, theories largely rest on what we know about fluid flow and then applying them to the Sun, which is primarily composed of hydrogen, helium, and plasma.

Developing a more precise grasp of convection is vital to comprehending a range of phenomena, including the formation of sunspots, which have a lower temperature than the rest of the Sun's surface, and the Sun's magnetic field, which is created by its interior plasma motions.

In order to develop their "MRI" of the Sun's plasma flows, the researchers examined high-resolution images of the Sun's surface taken by the Helioseismic and Magnetic Imager (HMI) onboard NASA's Solar Dynamics Observatory. Using a 16-million pixel camera, HMI measures motions on the Sun's surface caused by convection.

Once the scientists captured the precise movement waves on the Sun's surface, they were able to calculate its unseen plasma motions. This procedure is not unlike measuring the strength and direction of an ocean's current by monitoring the time it takes a swimmer to move across the water-currents moving against the swimmer will result in slower times while those going in the same direction will produce faster times, with stronger and weaker currents enhancing or diminishing the impact on the swimmer.

What they found significantly departed from existing theory--specifically, the speed of the Sun's plasma motions were approximately 100 times slower than scientists had previously projected.

"Our current theoretical understanding of magnetic field generation in the Sun relies on these motions being of a certain magnitude," explained Shravan Hanasoge, an associate research scholar in geosciences at Princeton University and a visiting scholar at NYU's Courant Institute of Mathematical Sciences. "These convective motions are currently believed to prop up large-scale circulations in the outer third of the Sun that generate magnetic fields."

"However, our results suggest that convective motions in the Sun are nearly 100 times smaller than these current theoretical expectations," continued Hanasoge, also a postdoctoral fellow at the Max Plank Institute in Katlenburg-Lindau, Germany. "If these motions are indeed that slow in the Sun, then the most widely accepted theory concerning the generation of solar magnetic field is broken, leaving us with no compelling theory to explain its generation of magnetic fields and the need to overhaul our understanding of the physics of the Sun's interior."

###

The study's other co-authors were Thomas Duvall, an astrophysicist at NASA, and Katepalli Sreenivasan, University Professor in NYU's Department of Physics and Courant Institute. Sreenivasan is also Senior Vice Provost for Science and Technology for the Global Network University at NYU and Provost of Polytechnic Institute of NYU.

New York University


Related Plasma Current Events and Plasma News Articles


Therapeutically robust correction, in vitro, of the most common cystic fibrosis mutation
In experiments with isolated cystic fibrosis lung cells, University of Alabama at Birmingham researchers and colleagues from two other institutions have partially restored the lost function of those cells.

Harvard chemists develop simple new platform for development of macrolide antibiotics
Harvard researchers have created a new, greatly simplified, platform for antibiotic discovery that may go a long way to solving the crisis of antibiotic resistance.

A slick way to test artificial knees and hips
A new study suggests that natural proteins can be used to effectively test new replacement hip and knee joints in the laboratory.

36,000 children already tested for early type 1 diabetes
One year after the introduction of the Bavarian pilot project Fr1da, the Institute of Diabetes Research, Helmholtz Zentrum München has published the first results in the BMJ Open journal.

How repeated spot microdischarges damage microdevices
In microelectronics, devices made up of two electrodes separated by an insulating barrier are subject to multiple of microdischarges - referred to as microfilaments - at the same spot.

Under Pressure: New technique could make large, flexible solar panels more feasible
A new, high-pressure technique may allow the production of huge sheets of thin-film silicon semiconductors at low temperatures in simple reactors at a fraction of the size and cost of current technology.

Silk stabilizes blood samples for months at high temperatures
Researchers at Tufts University have stabilized blood samples for long periods of time without refrigeration and at high temperatures by encapsulating them in air-dried silk protein.

High blood pressure lowers significantly after drinking tart Montmorency cherry juice
Drinking tart Montmorency cherry juice significantly reduces high blood pressure at a level comparable to that achieved by medication, according to new research from Northumbria University, Newcastle.

Quantum chemical computations provide insight into liver toxicity
Balasubramanian and Basak have recently reported quantum chemical computations that enhance our understanding of mechanisms for the causes of liver toxicity.

Compound from hops lowers cholesterol, blood sugar and weight gain
A recent study at Oregon State University has identified specific intake levels of xanthohumol, a natural flavonoid found in hops, that significantly improved some of the underlying markers of metabolic syndrome in laboratory animals and also reduced weight gain.
More Plasma Current Events and Plasma News Articles

Plasma Chemistry

Plasma Chemistry
by Alexander Fridman (Author)


This unique book provides a fundamental introduction to all aspects of modern plasma chemistry. The book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics, and electrodynamics, as well as all major electric discharges applied in plasma chemistry. The book considers most of the major applications of plasma chemistry from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production, and from plasma metallurgy to plasma medicine. The book can be helpful to engineers, scientists, and students interested in plasma physics, plasma chemistry, plasma engineering, and combustion, as well as in chemical physics, lasers, energy systems, and environmental control. The book contains an...

The Plasma Master

The Plasma Master


Nedward Simmons is living a regular Earth life when he stumbles across an artifact from an alien civilization. Its protective powers are more intriguing than useful to him, until the aliens themselves arrive. Unable to hand over the power he has unwittingly acquired, Ned decides instead to travel with them in an attempt to defeat the Anacron army, which threatens their freedom. But Ned soon learns that his Plasma Crystal is not the only source of mysterious power in the galaxy. Ned and his comrades must deal with a vast space armada, enemy Plasma Masters, and even a monster or two as they search for a way to penetrate the enemy fortress of Venom and restore peace to their empire.

Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology

Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology
by Michael Keidar (Author), Isak Beilis (Author)


Plasma Engineering is the first textbook that addresses plasma engineering in the aerospace, nanotechnology, and bioengineering fields from a unified standpoint. It covers the fundamentals of plasma physics at a level suitable for an upper level undergraduate or graduate student, and applies the unique properties of plasmas (ionized gases) to improve processes and performance over a wide variety of areas such as materials processing, spacecraft propulsion, and nanofabrication. The book starts by reviewing plasma particle collisions, waves, and instabilities, and proceeds to diagnostic tools, such as planar, spherical, and emissive probes, and the electrostatic analyzer, interferometric technique, and plasma spectroscopy. The physics of different types of electrical discharges are...

Plasma Physics: An Introduction

Plasma Physics: An Introduction
by Richard Fitzpatrick (Author)


Encompasses the Lectured Works of a Renowned Expert in the Field Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics. Mathematically Rigorous, but Driven by Physics This work contains over 80 exercises―carefully selected for their pedagogical value―with fully worked out solutions available in a separate solutions manual for professors. The...

Plasma Physics via Computer Simulation (Series in Plasma Physics)

Plasma Physics via Computer Simulation (Series in Plasma Physics)
by C.K. Birdsall (Author), A.B Langdon (Author)


Divided into three main parts, the book guides the reader to an understanding of the basic concepts in this fascinating field of research. Part 1 introduces you to the fundamental concepts of simulation. It examines one-dimensional electrostatic codes and electromagnetic codes, and describes the numerical methods and analysis. Part 2 explores the mathematics and physics behind the algorithms used in Part 1. In Part 3, the authors address some of the more complicated simulations in two and three dimensions. The book introduces projects to encourage practical work Readers can download plasma modeling and simulation software ― the ES1 program ― with implementations for PCs and Unix systems along with the original FORTRAN source code. Now available in paperback, Plasma Physics via...

Plasma Physics (Dover Books on Physics)

Plasma Physics (Dover Books on Physics)
by James E. Drummond (Author)


A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and '70s.
Hailed by Science magazine as a "well executed venture," the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwave plasma physics. Highlights include Klimontovich's article on quantum plasmas, Buneman's writings on how to distinguish between attenuating and amplifying waves, and Yoler's clear and cogent...

Plasma Fire: And Other Stories

Plasma Fire: And Other Stories
by Charles Lee Arnold (Author)


Plasma Fire: Six Science Fiction Short Stories, and two Novellas, featuring: A DOCTOR WITH A GUILTY CONSCIENCE Are his diagnoses contaminated by his own affliction? A PLANET WITH SENTIENT TREES They seem to be friendly, but are they really? A YOUNG MAN HAUNTED BY IMAGES OF WAR Is his grip on reality slipping? A FUTURE WHERE GAMBLING RUNS RAMPANT Can a loser survive the ultimate gamble? A COUPLE FACED WITH DEATH IN A BLIZZARD Can rescue be worse than carbon monoxide poisoning? A COLONY WORSHIPPING A LOCAL SPIRIT They are delusional, aren’t they? Two Science Fiction Novellas: A LETHAL RADIATION STORM FROM THE SUN Can two students race cross-country to reach a New Mexico sanctuary before it’s too late? A GROUP OF CLONES LIVING IN A SUNSTORM SANCTUARY Can they sort through their...

Introduction to plasma physics and controlled fusion. Volume 1, Plasma physics

Introduction to plasma physics and controlled fusion. Volume 1, Plasma physics
by Francis F. Chen (Author)


TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at...

  Compact Plasma and Focused Ion Beams
by Sudeep Bhattacharjee (Author)


Recent research has brought the application of microwaves from the classical fields of heating, communication, and generation of plasma discharges into the generation of compact plasmas that can be used for applications such as FIB and small plasma thrusters. However, these new applications bring with them a new set of challenges. With coverage ranging from the basics to new and emerging applications, Compact Plasma and Focused Ion Beams discusses how compact high-density microwave plasmas with dimensions smaller than the geometrical cutoff dimension can be generated and utilized for providing focused ion beams of various elements. Starting with the fundamentals of the cutoff problem for wave propagation in waveguides and plasma diagnostics, the author goes on to explain in detail the...

Plasma Physics for Astrophysics (Princeton Series in Astrophysics (Paperback))

Plasma Physics for Astrophysics (Princeton Series in Astrophysics (Paperback))
by Russell M. Kulsrud (Author)


In this book, a distinguished expert introduces plasma physics from the ground up, presenting it as a comprehensible field that can be grasped largely on the basis of physical intuition and qualitative reasoning, similar to other fields of physics. Plasmas are ionized gases that can be found in a hydrogen bomb explosion, the confinement chamber of an experimental fusion reactor, the solar corona, the aurora borealis, the interstellar medium, and the immediate vicinity of a gravitational black hole. Not surprisingly, plasma physics appears to consist of numerous topics arising independently from astrophysics, fusion physics, and other practical applications, and hence it remains a field poorly understood even by many astrophysicists. But, in fact, most of these topics can be approached...

© 2017 BrightSurf.com