Science Current Events | Science News | Brightsurf.com
 

Researchers create 'MRI' of the sun's interior motions

July 09, 2012
A team of scientists has created an "MRI" of the Sun's interior plasma motions, shedding light on how it transfers heat from its deep interior to its surface. The result, which appears in the journal the Proceedings of the National Academy of Sciences, upends our understanding of how heat is transported outwards by the Sun and challenges existing explanations of the formation of sunspots and magnetic field generation.

The work was conducted by researchers from NYU's Courant Institute of Mathematical Sciences and its Department of Physics, Princeton University, the Max Planck Institute, and NASA.

The Sun's heat, generated by nuclear fusion in its core, is transported to the surface by convection in the outer third. However, our understanding of this process is largely theoretical-the Sun is opaque, so convection cannot be directly observed. As a result, theories largely rest on what we know about fluid flow and then applying them to the Sun, which is primarily composed of hydrogen, helium, and plasma.

Developing a more precise grasp of convection is vital to comprehending a range of phenomena, including the formation of sunspots, which have a lower temperature than the rest of the Sun's surface, and the Sun's magnetic field, which is created by its interior plasma motions.

In order to develop their "MRI" of the Sun's plasma flows, the researchers examined high-resolution images of the Sun's surface taken by the Helioseismic and Magnetic Imager (HMI) onboard NASA's Solar Dynamics Observatory. Using a 16-million pixel camera, HMI measures motions on the Sun's surface caused by convection.

Once the scientists captured the precise movement waves on the Sun's surface, they were able to calculate its unseen plasma motions. This procedure is not unlike measuring the strength and direction of an ocean's current by monitoring the time it takes a swimmer to move across the water-currents moving against the swimmer will result in slower times while those going in the same direction will produce faster times, with stronger and weaker currents enhancing or diminishing the impact on the swimmer.

What they found significantly departed from existing theory--specifically, the speed of the Sun's plasma motions were approximately 100 times slower than scientists had previously projected.

"Our current theoretical understanding of magnetic field generation in the Sun relies on these motions being of a certain magnitude," explained Shravan Hanasoge, an associate research scholar in geosciences at Princeton University and a visiting scholar at NYU's Courant Institute of Mathematical Sciences. "These convective motions are currently believed to prop up large-scale circulations in the outer third of the Sun that generate magnetic fields."

"However, our results suggest that convective motions in the Sun are nearly 100 times smaller than these current theoretical expectations," continued Hanasoge, also a postdoctoral fellow at the Max Plank Institute in Katlenburg-Lindau, Germany. "If these motions are indeed that slow in the Sun, then the most widely accepted theory concerning the generation of solar magnetic field is broken, leaving us with no compelling theory to explain its generation of magnetic fields and the need to overhaul our understanding of the physics of the Sun's interior."

###

The study's other co-authors were Thomas Duvall, an astrophysicist at NASA, and Katepalli Sreenivasan, University Professor in NYU's Department of Physics and Courant Institute. Sreenivasan is also Senior Vice Provost for Science and Technology for the Global Network University at NYU and Provost of Polytechnic Institute of NYU.

New York University


Related Plasma Current Events and Plasma News Articles


Kent State Physics Professor Publishes Exact Solution to Model Big Bang and Quark Gluon Plasma
Unlike in mathematics, it is rare to have exact solutions to physics problems.

Skipping meals increases children's obesity and cardiometabolic risk
Children who skip main meals are more likely to have excess body fat and an increased cardiometabolic risk already at the age of 6 to 8 years, according to a Finnish study.

NASA's Fermi Mission Brings Deeper Focus to Thunderstorm Gamma-rays
Each day, thunderstorms around the world produce about a thousand quick bursts of gamma rays, some of the highest-energy light naturally found on Earth.

Peroxisome proliferator-activated receptor agonists may treat alcohol dependence
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins that regulate the expression of genes. Drugs that activate PPARs - PPAR agonists - are used to treat diabetes and elevated blood lipids.

Seasonal flu vaccines boost immunity to many types of flu viruses
Seasonal flu vaccines may protect individuals not only against the strains of flu they contain but also against many additional types, according to a study published this week in mBio®, the online open-access journal of the American Society for Microbiology.

Behavioral interventions to prevent progression to diabetes equally effective in men and women
Behavioural and drug interventions aiming to prevent people with prediabetes progressing to full blown type 2 diabetes are equally effective for both sexes at preventing progression and reducing weight, according to a new systematic review and meta-analysis.

Combined strategies help patients with adverse heparin reaction before heart surgery
New evidence suggests that therapeutic plasma exchange and appropriate blood testing could help patients who are in urgent need of heart surgery, but have a history of an adverse reaction to the blood thinner heparin.

Some heparin-allergic patients could have urgent heart surgery sooner with combination of appropriate blood screenings and therapeutic plasma exchange
McMaster University researchers have found new evidence that suggests patients with a history of adverse reaction to the blood thinner heparin may be ready for urgent heart surgery sooner with a combination of appropriate blood screenings and therapeutic plasma exchange.

Anxiety can damage brain
People with mild cognitive impairment (MCI) are at increased risk of converting to Alzheimer's disease within a few years, but a new study warns the risk increases significantly if they suffer from anxiety.

IU researchers: Protein linked to aging identified as new target for controlling diabetes
Indiana University School of Medicine researchers have identified a small protein with a big role in lowering plasma glucose and increasing insulin sensitivity. Their research appeared online today in Diabetes, the journal of the American Diabetes Association.
More Plasma Current Events and Plasma News Articles

Plasma Physics (Dover Books on Physics)

Plasma Physics (Dover Books on Physics)
by James E. Drummond (Author)


A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and '70s.
Hailed by Science magazine as a "well executed venture," the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwave plasma physics. Highlights include Klimontovich's article on quantum plasmas, Buneman's writings on how to distinguish between attenuating and amplifying waves, and Yoler's clear and cogent...

Introduction to plasma physics and controlled fusion. Volume 1, Plasma physics

Introduction to plasma physics and controlled fusion. Volume 1, Plasma physics
by Francis F. Chen (Author)


TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at...

Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology

Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology
by Michael Keidar (Author), Isak Beilis (Author)


Plasma engineering applies the unique properties of plasmas (ionized gases) to improve processes and performance over many fields, such as materials processing, spacecraft propulsion, and nanofabrication. Plasma Engineering considers this rapidly expanding discipline from a unified standpoint, addressing fundamentals of physics and modeling as well as new real-word applications in aerospace, nanotechnology, and bioengineering. The book starts by reviewing plasma particle collisions, waves, and instabilities, and proceeds to diagnostic tools, such as planar, spherical, and emissive probes, and the electrostatic analyzer, interferometric technique, and plasma spectroscopy. The physics of different types of electrical discharges are considered, including the classical Townsend mechanism of...

Plasma Physics and Fusion Energy

Plasma Physics and Fusion Energy
by Jeffrey P. Freidberg (Author)


Considering the worldwide increase of interest in fusion research over the last decade - the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed to meet ever-increasing demands for electrical energy, is obvious. This book serves up the latest interest in alternative energy. Based on a series of graduate course notes in plasma physics and fusion energy at MIT, the text begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as the production of fusion power, power balance, the design of a simple fusion reactor, and the basic plasma physics issues faced by the developers of fusion power. This book is suitable for...

Fundamentals of Plasma Physics

Fundamentals of Plasma Physics
by Paul M. Bellan (Author)


This rigorous explanation of plasmas is relevant to diverse plasma applications such as controlled fusion, astrophysical plasmas, solar physics, magnetospheric plasmas, and plasma thrusters. More thorough than previous texts, it exploits new powerful mathematical techniques to develop deeper insights into plasma behavior. After developing the basic plasma equations from first principles, the book explores single particle motion with particular attention to adiabatic invariance. The author then examines types of plasma waves and the issue of Landau damping. Magnetohydrodynamic equilibrium and stability are tackled with emphasis on the topological concepts of magnetic helicity and self-organization. Advanced topics follow, including magnetic reconnection, nonlinear waves, and the...

Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas

Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas
by Alexander Piel (Author)


This book is an outgrowth of courses in plasma physics which I have taught at Kiel University for many years. During this time I have tried to convince my students that plasmas as different as gas dicharges, fusion plasmas and space plasmas can be described in a uni ed way by simple models. The challenge in teaching plasma physics is its apparent complexity. The wealth of plasma phenomena found in so diverse elds makes it quite different from atomic physics, where atomic structure, spectral lines and chemical binding can all be derived from a single equation—the Schrödinger equation. I positively accept the variety of plasmas and refrain from subdividing plasma physics into the traditional, but arti cially separated elds, of hot, cold and space plasmas. This is why I like to confront...

Plasma Physics for Astrophysics (Princeton Series in Astrophysics)

Plasma Physics for Astrophysics (Princeton Series in Astrophysics)
by Russell M. Kulsrud (Author)



In this book, a distinguished expert introduces plasma physics from the ground up, presenting it as a comprehensible field that can be grasped largely on the basis of physical intuition and qualitative reasoning, similar to other fields of physics. Plasmas are ionized gases that can be found in a hydrogen bomb explosion, the confinement chamber of an experimental fusion reactor, the solar corona, the aurora borealis, the interstellar medium, and the immediate vicinity of a gravitational black hole. Not surprisingly, plasma physics appears to consist of numerous topics arising independently from astrophysics, fusion physics, and other practical applications, and hence it remains a field poorly understood even by many astrophysicists. But, in fact, most of these topics can be...

Plasma Chemistry

Plasma Chemistry
by Alexander Fridman (Author)


This unique book provides a fundamental introduction to all aspects of modern plasma chemistry. The book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics, and electrodynamics, as well as all major electric discharges applied in plasma chemistry. The book considers most of the major applications of plasma chemistry from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production, and from plasma metallurgy to plasma medicine. The book can be helpful to engineers, scientists, and students interested in plasma physics, plasma chemistry, plasma engineering, and combustion, as well as in chemical physics, lasers, energy systems, and environmental control. The book contains an...

Plasma Physics via Computer Simulation (Series in Plasma Physics)

Plasma Physics via Computer Simulation (Series in Plasma Physics)
by C.K. Birdsall (Author), A.B Langdon (Author)


Divided into three main parts, the book guides the reader to an understanding of the basic concepts in this fascinating field of research. Part 1 introduces you to the fundamental concepts of simulation. It examines one-dimensional electrostatic codes and electromagnetic codes, and describes the numerical methods and analysis. Part 2 explores the mathematics and physics behind the algorithms used in Part 1. In Part 3, the authors address some of the more complicated simulations in two and three dimensions. The book introduces projects to encourage practical work Readers can download plasma modeling and simulation software — the ES1 program — with implementations for PCs and Unix systems along with the original FORTRAN source code. Now available in paperback, Plasma Physics via...

Plasma Waves, 2nd Edition (Series in Plasma Physics)

Plasma Waves, 2nd Edition (Series in Plasma Physics)
by Donald Gary Swanson (Author)


Extended and revised, Plasma Waves, 2nd Edition provides essential information on basic formulas and categorizes the various  possible types of waves and their interactions. The book includes modern and complete treatments of electron cyclotron emission, collisions, relativistic effects, Landau damping, quasilinear and nonlinear wave theory, and tunneling equations. The broad scope encompasses waves in cold, warm, and hot plasmas and relativistic plasma waves. Special chapters deal with the effects of boundaries, inhomogeneities, and nonlinear effects. The author derives all formulae and describes several fundamental wave experiments, allowing for a greater appreciation of the subject.

© 2014 BrightSurf.com