Science Current Events | Science News | Brightsurf.com
 

Researchers create 'MRI' of the sun's interior motions

July 09, 2012
A team of scientists has created an "MRI" of the Sun's interior plasma motions, shedding light on how it transfers heat from its deep interior to its surface. The result, which appears in the journal the Proceedings of the National Academy of Sciences, upends our understanding of how heat is transported outwards by the Sun and challenges existing explanations of the formation of sunspots and magnetic field generation.

The work was conducted by researchers from NYU's Courant Institute of Mathematical Sciences and its Department of Physics, Princeton University, the Max Planck Institute, and NASA.

The Sun's heat, generated by nuclear fusion in its core, is transported to the surface by convection in the outer third. However, our understanding of this process is largely theoretical-the Sun is opaque, so convection cannot be directly observed. As a result, theories largely rest on what we know about fluid flow and then applying them to the Sun, which is primarily composed of hydrogen, helium, and plasma.

Developing a more precise grasp of convection is vital to comprehending a range of phenomena, including the formation of sunspots, which have a lower temperature than the rest of the Sun's surface, and the Sun's magnetic field, which is created by its interior plasma motions.

In order to develop their "MRI" of the Sun's plasma flows, the researchers examined high-resolution images of the Sun's surface taken by the Helioseismic and Magnetic Imager (HMI) onboard NASA's Solar Dynamics Observatory. Using a 16-million pixel camera, HMI measures motions on the Sun's surface caused by convection.

Once the scientists captured the precise movement waves on the Sun's surface, they were able to calculate its unseen plasma motions. This procedure is not unlike measuring the strength and direction of an ocean's current by monitoring the time it takes a swimmer to move across the water-currents moving against the swimmer will result in slower times while those going in the same direction will produce faster times, with stronger and weaker currents enhancing or diminishing the impact on the swimmer.

What they found significantly departed from existing theory--specifically, the speed of the Sun's plasma motions were approximately 100 times slower than scientists had previously projected.

"Our current theoretical understanding of magnetic field generation in the Sun relies on these motions being of a certain magnitude," explained Shravan Hanasoge, an associate research scholar in geosciences at Princeton University and a visiting scholar at NYU's Courant Institute of Mathematical Sciences. "These convective motions are currently believed to prop up large-scale circulations in the outer third of the Sun that generate magnetic fields."

"However, our results suggest that convective motions in the Sun are nearly 100 times smaller than these current theoretical expectations," continued Hanasoge, also a postdoctoral fellow at the Max Plank Institute in Katlenburg-Lindau, Germany. "If these motions are indeed that slow in the Sun, then the most widely accepted theory concerning the generation of solar magnetic field is broken, leaving us with no compelling theory to explain its generation of magnetic fields and the need to overhaul our understanding of the physics of the Sun's interior."

###

The study's other co-authors were Thomas Duvall, an astrophysicist at NASA, and Katepalli Sreenivasan, University Professor in NYU's Department of Physics and Courant Institute. Sreenivasan is also Senior Vice Provost for Science and Technology for the Global Network University at NYU and Provost of Polytechnic Institute of NYU.

New York University


Related Plasma Current Events and Plasma News Articles


Nanospiked bacteria are the brightest hard X-ray emitters
In a step that overturns traditional assumptions and practice, researchers at the Tata Institute of Fundamental Research, Mumbai and Institute for Plasma Research, Gandhi Nagar have fashioned bacteria to emit intense, hard x-ray radiation.

New light in terahertz window
Yet it has the potential for numerous applications. In Physical Review Letters, scientists at Jülich together with their international partners present a new concept that uses short-pulse lasers to expand the capabilities of terahertz sources currently being developed.

X marks the spot: Researchers confirm novel method for controlling plasma rotation
Rotation is key to the performance of salad spinners, toy tops, and centrifuges, but recent research suggests a way to harness rotation for the future of mankind's energy supply.

Penn vet research confirms a more accurate method for blood glucose testing
For diabetics, a quick prick of the finger can give information about their blood glucose levels, guiding them in whether to have a snack or inject a dose of insulin.

Statins show promise to reduce major complications following lung surgery
The results of a prospective, randomized, placebo-controlled, double-blind trial of patients undergoing elective pulmonary resection was designed to evaluate the effects of statin therapy.

Titan's atmosphere even more Earth-like than previously thought
Scientists at UCL have observed how a widespread polar wind is driving gas from the atmosphere of Saturn's moon Titan.

Communicating with hypersonic vehicles in flight
Near the end of the movie Apollo 13, which depicts the harrowing journey of the three astronauts aboard the aborted 1970 lunar mission, the tension mounts in textbook fashion.

Researchers correlate rheumatoid arthritis and giant cell arteritis with solar cycles
What began as a chat between husband and wife has evolved into an intriguing scientific discovery. The results, published in May in BMJ (formerly British Medical Journal) Open, show a "highly significant" correlation between periodic solar storms and incidences of rheumatoid arthritis (RA) and giant cell arteritis (GCA), two potentially debilitating autoimmune diseases.

Autoimmunity: New immunoregulation and biomarker
Clinicians at Ludwig-Maximilians-Universitaet (LMU) in Munich have elucidated a mechanism involved in determining the lifespan of antibody-producing cells, and identified a promising new biomarker for monitoring autoimmune diseases like multiple sclerosis and lupus erythematosus.

Visualizing calcified coronary arteries may be wake-up call to change lifestyle
"It is my coronary artery and my coronary artery calcification and I am facing a real risk and challenge," said one patient.
More Plasma Current Events and Plasma News Articles

Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology

Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology
by Michael Keidar (Author), Isak Beilis (Author)


Plasma engineering applies the unique properties of plasmas (ionized gases) to improve processes and performance over many fields, such as materials processing, spacecraft propulsion, and nanofabrication. Plasma Engineering considers this rapidly expanding discipline from a unified standpoint, addressing fundamentals of physics and modeling as well as new real-word applications in aerospace, nanotechnology, and bioengineering. The book starts by reviewing plasma particle collisions, waves, and instabilities, and proceeds to diagnostic tools, such as planar, spherical, and emissive probes, and the electrostatic analyzer, interferometric technique, and plasma spectroscopy. The physics of different types of electrical discharges are considered, including the classical Townsend mechanism of...

Principles of Plasma Discharges and Materials Processing , 2nd Edition

Principles of Plasma Discharges and Materials Processing , 2nd Edition
by Michael A. Lieberman (Author), Alan J. Lichtenberg (Author)


This is a thorough update of the industry classic on principles of plasma processing. The first edition of "Principles of Plasma Discharges and Materials Processing", published over a decade ago, was lauded for its complete treatment of both basic plasma physics and industrial plasma processing, quickly becoming the primary reference for students and professionals. The Second Edition has been carefully updated and revised to reflect recent developments in the field and to further clarify the presentation of basic principles. Along with in-depth coverage of the fundamentals of plasma physics and chemistry, the authors apply basic theory to plasma discharges, including calculations of plasma parameters and the scaling of plasma parameters with control parameters. New and expanded topics...

Plasma Physics for Astrophysics (Princeton Series in Astrophysics)

Plasma Physics for Astrophysics (Princeton Series in Astrophysics)
by Russell M. Kulsrud (Author)


In this book, a distinguished expert introduces plasma physics from the ground up, presenting it as a comprehensible field that can be grasped largely on the basis of physical intuition and qualitative reasoning, similar to other fields of physics. Plasmas are ionized gases that can be found in a hydrogen bomb explosion, the confinement chamber of an experimental fusion reactor, the solar corona, the aurora borealis, the interstellar medium, and the immediate vicinity of a gravitational black hole. Not surprisingly, plasma physics appears to consist of numerous topics arising independently from astrophysics, fusion physics, and other practical applications, and hence it remains a field poorly understood even by many astrophysicists. But, in fact, most of these topics can be approached...

Fundamentals of Plasma Physics

Fundamentals of Plasma Physics
by Paul M. Bellan (Author)


This rigorous explanation of plasmas is relevant to diverse plasma applications such as controlled fusion, astrophysical plasmas, solar physics, magnetospheric plasmas, and plasma thrusters. More thorough than previous texts, it exploits new powerful mathematical techniques to develop deeper insights into plasma behavior. After developing the basic plasma equations from first principles, the book explores single particle motion with particular attention to adiabatic invariance. The author then examines types of plasma waves and the issue of Landau damping. Magnetohydrodynamic equilibrium and stability are tackled with emphasis on the topological concepts of magnetic helicity and self-organization. Advanced topics follow, including magnetic reconnection, nonlinear waves, and the...

Plasma Physics (Dover Books on Physics)

Plasma Physics (Dover Books on Physics)
by James E. Drummond (Author)


A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and '70s.
Hailed by Science magazine as a "well executed venture," the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwave plasma physics. Highlights include Klimontovich's article on quantum plasmas, Buneman's writings on how to distinguish between attenuating and amplifying waves, and Yoler's clear and cogent...

Introduction to plasma physics and controlled fusion. Volume 1, Plasma physics

Introduction to plasma physics and controlled fusion. Volume 1, Plasma physics
by Francis F. Chen (Author)


TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at...

Plasma Physics and Engineering, Second Edition

Plasma Physics and Engineering, Second Edition
by Alexander Fridman (Author), Lawrence A. Kennedy (Author)


Plasma plays an important role in a wide variety of industrial processes, including material processing, environmental control, electronic chip manufacturing, light sources, and green energy, not to mention fuel conversion and hydrogen production, biomedicine, flow control, catalysis, and space propulsion. Following the general outline of the bestselling first edition, Plasma Physics and Engineering, Second Edition provides a clear fundamental introduction to all aspects of the modern field. Reflecting recent scientific and technological developments, this resource will be useful to engineers, scientists, and students working with the physics, engineering, chemistry, and combustion of plasma, as well as chemical physics, lasers, electronics, new methods of material treatment, fuel...

Plasma Cell Neoplasms: A Morphologic, Cytogenetic and Immunophenotypic Approach

Plasma Cell Neoplasms: A Morphologic, Cytogenetic and Immunophenotypic Approach
by Michael A. Linden (Editor), Robert W. McKenna (Editor)


This textbook will provide a comprehensive, state-of-the art review the field of diagnostic hematopathology as it’s applied to patients with plasma cell neoplasms. Particular emphasis will be placed on immunophenotypic data – immunohistochemistry and flow cytometry – as well as cytogenetics. We will also discuss how these ancillary data can predict prognosis and chemotherapeutic response. Plasma Cell Neoplasms will serve as a very useful resource for physicians and researchers interested in the plasma cell myeloma diagnosis, therapy, and research. It will provide a concise yet comprehensive summary of the current status of the field that will help guide patient management and stimulate investigative efforts. All chapters will be written by experts in their fields and will include...

Plasma Discharge in Liquid: Water Treatment and Applications

Plasma Discharge in Liquid: Water Treatment and Applications
by Yong Yang (Author), Young I. Cho (Author), Alexander Fridman (Author)


Plasma methods that effectively combine ultraviolet radiation, active chemicals, and high electric fields offer an alternative to conventional water treatment methods. However, knowledge of the electric breakdown of liquids has not kept pace with this increasing interest, mostly due to the complexity of phenomena related to the plasma breakdown process. Plasma Discharge in Liquid: Water Treatment and Applications provides engineers and scientists with a fundamental understanding of the physical and chemical phenomena associated with plasma discharges in liquids, particularly in water. It also examines state-of-the-art plasma-assisted water treatment technologies. The Physics & Applications of Underwater Plasma Discharges The first part of the book describes the physical mechanism of...

Glow Discharge Processes: Sputtering and Plasma Etching

Glow Discharge Processes: Sputtering and Plasma Etching
by Brian Chapman (Author)


Develops detailed understanding of the deposition and etching of materials by sputtering discharge, and of etching of materials by chemically active discharge. Treats glow discharge at several levels from basic phenomena to industrial applications--practical techniques diligently related to fundamentals. Subjects range from voltage, distributions encountered in plasma etching systems to plasma-electron interactions that contribute to sustaining the discharge.

© 2015 BrightSurf.com