Science Current Events | Science News | Brightsurf.com
 

Unprecedented accuracy in locating brain electrical activity with new device

July 27, 2012

Researchers at Aalto University in Finland have developed the world's first device designed for mapping the human brain that combines whole-head magnetoencephalography (MEG) and magnetic resonance imaging (MRI) technology. MEG measures the electrical function and MRI visualizes the structure of the brain. The merging of these two technologies will produce unprecedented accuracy in locating brain electrical activity non-invasively.

We expect that the new technology will improve the accuracy of brain mapping of patients with epilepsy. It may also improve the diagnosis of cancer patients because the improved image contrast may facilitate the characterization of cancer tissue, says Academy Professor Risto Ilmoniemi.

The innovative MEG-MRI device will allow brain imaging for new patients, such as those with metal implants. Also, the silent and open device will not scare children or make people feel claustrophobic. In the future, this development can also reduce costs as images can be obtained in one session rather than two, Ilmoniemi states.

The problem with MEG is that when the technique is used separately, the image accuracy can be compromised because of the movement of the brain. Also, the image it provides may not be accurate enough for precise brain surgery. In the past, it was not possible to combine high-field MRI and MEG because their magnetic fields interfered with one another. Extremely sensitive magnetic field sensors have now been developed, so scientists can now use the new low-field MRI with a magnetic field strength of only a few hundred-thousandths of that of the high-field MRI device. Fusing these two technologies produces localization accuracy that was not possible with MRI or MEG alone.

Aalto University


Related Magnetoencephalography Current Events and Magnetoencephalography News Articles


Bilingual baby brains show increased activity in executive function regions
Many brain studies show that bilingual adults have more activity in areas associated with executive function, a set of mental abilities that includes problem-solving, shifting attention and other desirable cognitive traits.

LSD changes consciousness by reorganizing human brain networks
LSD is known to cause changes in consciousness, including "ego-dissolution", or a loss of the sense of self.

Analysis of neuronal avalanches reveals spatial temporal roadmap of humans higher cognitive function
The word 'avalanche' is generally associated with violent and unexpected events -- such as rockslides, or the sudden collapse of unstable drifts of snow. But in brain research, avalanches -- intermittent cascades of electrical activity -- are everyday occurrences that are not only peaceful, but actually reflect stability.

A 'hot' new development for ultracold magnetic sensors
Magnetoencephalography, or MEG, is a non-invasive technique for investigating human brain activity for surgical planning or research, and has been used in hospitals and universities for more than 30 years.

VTT develops a simple but extremely sensitive magnetometer
VTT Technical Research Centre of Finland has developed an innovative magnetometer that can replace conventional technology in applications such as neuroimaging, mineral exploration and molecular diagnostics.

Study uncovers why almost winning is just as good for some gamblers
A new study led by the University of Exeter and Swansea University has pinpointed the changes in the brain that lead gamblers to react in the same way to near-misses as they do to winning.

Study Shows Autistic Brains Create More Information at Rest
New research from Case Western Reserve University and University of Toronto neuroscientists finds that the brains of autistic children generate more information at rest - a 42% increase on average.

Expanding our view of vision
Every time you open your eyes, visual information flows into your brain, which interprets what you're seeing.

In the blink of an eye
Imagine seeing a dozen pictures flash by in a fraction of a second. You might think it would be impossible to identify any images you see for such a short time.

NIST calibration tools to encourage use of novel medical imaging technique
The National Institute of Standards and Technology (NIST) has developed prototype calibration tools for an experimental medical imaging technique that offers new advantages in diagnosing and monitoring of certain cancers and possibly other medical conditions.
More Magnetoencephalography Current Events and Magnetoencephalography News Articles

Magnetoencephalography: From Signals to Dynamic Cortical Networks (Series in Bioengineering)

Magnetoencephalography: From Signals to Dynamic Cortical Networks (Series in Bioengineering)
by Selma Supek (Editor), Cheryl J. Aine (Editor)


Magnetoencephalography (MEG) is an invaluable functional brain imaging technique that provides direct, real-time monitoring of neuronal activity necessary for gaining insight into dynamic cortical networks. Our intentions with this book are to cover the richness and transdisciplinary nature of the MEG field, make it more accessible to newcomers and experienced researchers and to stimulate growth in the MEG area. The book presents a comprehensive overview of MEG basics and the latest developments in methodological, empirical and clinical research, directed toward master and doctoral students, as well as researchers. There are three levels of contributions: 1) tutorials on instrumentation, measurements, modeling, and experimental design; 2) topical reviews providing extensive coverage of...

Clinical Magnetoencephalography and Magnetic Source Imaging

Clinical Magnetoencephalography and Magnetic Source Imaging
by Andrew C. Papanicolaou (Author)


This is the first volume to explore the field of clinical magnetoencephalography (MEG) and magnetic source imaging (MSI), the techniques measuring the magnetic fields generated by neuronal activity in the brain. Describing the empirical knowledge gained during the last two decades, this book will serve as a basis for the training of clinicians and scientists entering this new and exciting field. The book covers the methods for recording MEG and performing MSI in a clinical setting and includes practical examples of data collection and analysis. It explains why MEG should be used in the evaluation and treatment of patients being considered for epilepsy surgery, concluding with a section describing the potential for future applications of these methods. This is essential reading for...

MEG: An Introduction to Methods

MEG: An Introduction to Methods
by Oxford University Press


Magnetoencephalography (MEG) is an exciting brain imaging technology that allows real-time tracking of neural activity, making it an invaluable tool for advancing our understanding of brain function. In this comprehensive introduction to MEG, Peter Hansen, Morten Kringelbach, and Riitta Salmelin have brought together the leading researchers to provide the basic tools for planning and executing MEG experiments, as well as analyzing and interpreting the resulting data. Chapters on the basics describe the fundamentals of MEG and its instrumentation, and provide guidelines for designing experiments and performing successful measurements. Chapters on data analysis present it in detail, from general concepts and assumptions to analysis of evoked responses and oscillatory background activity....

Clinical Applications of Magnetoencephalography

Clinical Applications of Magnetoencephalography
by Shozo Tobimatsu (Editor), Ryusuke Kakigi (Editor)


This book presents an overview of the recent advances in clinical applications of magnetoencephalography (MEG). With the expansion of MEG to neuroscience, its clinical applications have also been actively pursued. Featuring contributions from prominent experts in the fields, the book focuses on the current status of the application of MEG, not only to each nervous system but also to various diseases such as epilepsy, neurological disorders, and psychiatric disorders, while also examining the feasibility of using MEG for these diseases. Clinical Applications of Magnetoencephalography offers an indispensable resource for neurologists, neurosurgeons, pediatricians, and psychiatrists, as well as researchers in the field of neuroscience.

Modern Electroencephalographic Assessment Techniques: Theory and Applications (Neuromethods)

Modern Electroencephalographic Assessment Techniques: Theory and Applications (Neuromethods)
by Vangelis Sakkalis (Editor)


Modern Electroencephalographic Assessment Techniques: Theory and Applications presents numerous signal processing and connectivity analysis methodologies addressing a wide variety of clinical applications including epilepsy, schizophrenia, Alzheimer’s disease and even alcoholism. Among the different topics addressed, the neurophysiological basis of cognitive processes is also investigated. The goal is to provide a comprehensive overview of the most modern and widely established approaches mainly applied in, but not limited to, decomposing high resolution multichannel Electroencephalography (EEG) and Magnetoencephalography (MEG) signals into functional interconnected brain regions. Synergistic approaches linking both EEG/ MEG and functional Magnetic Resonance Imaging (fMRI) techniques...

Brain Signal Analysis: Advances in Neuroelectric and Neuromagnetic Methods (MIT Press)

Brain Signal Analysis: Advances in Neuroelectric and Neuromagnetic Methods (MIT Press)
by Todd C. Handy (Editor)


Cognitive electrophysiology concerns the study of the brain's electrical and magnetic responses to both external and internal events. These can be measured using electroencephalograms (EEGs) or magnetoencephalograms (MEGs). With the advent of functional magnetic resonance imaging (fMRI), another method of tracking brain signals, the tools and techniques of ERP, EEG and MEG data acquisition and analysis have been developing at a similarly rapid pace, and this book offers an overview of key recent advances in cognitive electrophysiology. The chapters highlight the increasing overlap in EEG and MEG analytic techniques, describing several methods applicable to both; they discuss recent developments, including reverse correlation methods in visual-evoked potentials and a new approach to...

Functional Roles of Alpha-Band Phase Synchronization in Local and Large-Scale Cortical Networks

Functional Roles of Alpha-Band Phase Synchronization in Local and Large-Scale Cortical Networks


Alpha-frequency band (8–14 Hz) oscillations are among the most salient phenomena in human electroencephalography (EEG) recordings and yet their functional roles have remained unclear. Much of research on alpha oscillations in human EEG has focused on peri-stimulus amplitude dynamics, which phenomenologically support an idea of alpha oscillations being negatively correlated with local cortical excitability and having a role in the suppression of task-irrelevant neuronal processing. This kind of an inhibitory role for alpha oscillations is also supported by several functional magnetic resonance imaging and trans-cranial magnetic stimulation studies. Nevertheless, investigations of local and inter-areal alpha phase dynamics suggest that the alpha-frequency band rhythmicity may play a...

Magnetoencephalography: From Signals to Dynamic Cortical Networks (Series in Bioengineering) (2014-08-08)

Magnetoencephalography: From Signals to Dynamic Cortical Networks (Series in Bioengineering) (2014-08-08)
by unknown (Author)




Magnetic Source Imaging of the Human Brain

Magnetic Source Imaging of the Human Brain
by Zhong-Lin Lu (Editor), Lloyd Kaufman (Editor)


This book is designed to acquaint serious students, scientists, and clinicians with magnetic source imaging (MSI)--a brain imaging technique of proven importance that promises even more important advances. The technique permits spatial resolution of neural events on a scale measured in millimeters and temporal resolution measured in milliseconds. Although widely mentioned in literature dealing with cognitive neuroscience and functional brain imaging, there is no single book describing both the foundations and actual methods of magnetoencephalopgraphy and its underlying science, neuromagnetism. This volume fills a long-standing need, as it is accessible to scientists and students having no special background in the field, and makes it possible for them to understand this literature and...

Multimodal Oscillation-based Connectivity Theory

Multimodal Oscillation-based Connectivity Theory
by Satu Palva (Editor)


Systems-level neuronal mechanisms that coordinate the temporally, anatomically, and functionally distributed neuronal activity into coherent cognitive operations in the human brain have remained poorly understood. In humans, neuronal oscillations and synchronization can be recorded non-invasively with electro- and magnetoencephalography (EEG and MEG) that have excellent temporal resolution and an adequate spatial resolution when combined with source-reconstruction methods. In this book, leading authors in the field describe how recent methodological advances have paved the way to several major breakthroughs in the observations of large-scale synchrony from human non-invasive MEG data. This volume also presents the caveats influencing analyses of synchronization. These include the...

© 2016 BrightSurf.com