Science Current Events | Science News |

Ion selectivity in neuronal signaling channels evolved twice in animals

July 27, 2012

Excitation of neurons depends on the selected influx of certain ions, namely sodium, calcium and potassium through specific channels. Obviously, these channels were crucial for the evolution of nervous systems in animals. How such channels could have evolved their selectivity has been a puzzle until now. Yehu Moran and Ulrich Technau from the University of Vienna together with Scientists from Tel Aviv University and the Woods Hole Oceanographic Institution (USA) have now revealed that voltage-gated sodium channels, which are responsible for neuronal signaling in the nerves of animals, evolved twice in higher and lower animals. These results were published in "Cell Reports".

The opening and closing of ion channels enable flow of ions that constitute the electrical signaling in all nervous systems. Every thought we have or every move we make is the result of the highly accurate opening and closing of numerous ion channels. Whereas the channels of most lower animals and their unicellular relatives cannot discern between sodium and calcium ions, those of higher animals are highly specific for sodium, a characteristic that is important for fast and accurate signaling in complex nervous system.

Surprising results in sea anemones and jellyfish

However, the researchers found that a group of basal animals with simple nerve nets including sea anemones and jellyfish also possess voltage-gated sodium channels, which differ from those found in higher animals, yet show the same selectivity for sodium. Since cnidarians separated from the rest of the animals more than 600 million years ago, these findings suggest that the channels of both cnidarians and higher animals originated independently twice, from ancient non-selective channels which also transmit calcium.

Since many other processes of internal cell signaling are highly dependent on calcium ions, the use of non-selective ion channels in neurons would accidently trigger various signaling systems inside the cells and will cause damage. The evolution of selectivity for sodium ions is therefore considered as an important step in the evolution of nervous systems with fast transmission. This study shows that different parts of the channel changed in a convergent manner during the evolution of cnidarians and higher animals in order to perform the same task, namely to select for sodium ions.

This demonstrates that important components for the functional nervous systems evolved twice in basal and higher animals, which suggests that more complex nervous systems that rely on such ion-selective channels could have also evolved twice independently.

University of Vienna

Related Neuronal Signaling Current Events and Neuronal Signaling News Articles

Tarantula Toxin is Used to Report on Electrical Activity in Live Cells
Crucial experiments to develop a novel probe of cellular electrical activity were conducted in the Neurobiology course at the Marine Biological Laboratory (MBL) in 2013. Today, that optical probe, which combines a tarantula toxin with a fluorescent compound, is introduced in a paper in the Proceedings of the National Academy of Sciences.

Study finds association between maternal exposure to agricultural pesticides
Pregnant women who lived in close proximity to fields and farms where chemical pesticides were applied experienced a two-thirds increased risk of having a child with autism spectrum disorder or other developmental delay, a study by researchers with the UC Davis MIND Institute has found.

International study yields important clues to the genetics of epilepsy
An international team of researchers has discovered a significant genetic component of Idiopathic Generalized Epilepsy (IGE), the most common form of epilepsy.

Three gene networks discovered in autism, may present treatment targets
A large new analysis of DNA from thousands of patients has uncovered several underlying gene networks with potentially important roles in autism.

Long distance signals protect brain from viral infections
The brain contains a defense system that prevents at least two unrelated viruses-and possibly many more-from invading the brain at large. The research is published online ahead of print in the Journal of Virology.

New research sheds light on how the body regulates fundamental neuro-hormone
New research has revealed a previously unknown mechanism in the body which regulates a hormone that is crucial for motivation, stress responses and control of blood pressure, pain and appetite.

Uncovering first molecular missteps that drive neurons in pathway leading to Alzheimer's disease
Much of the debate in Alzheimer's disease (AD) has focused on whether the protein amyloid-beta or the tau protein is the symptom or the cause of the disease.

Tiny worm sheds light on giant mystery about neurons
Scientists have identified a gene that keeps our nerve fibers from clogging up. Researchers in Ken Miller's laboratory at the Oklahoma Medical Research Foundation (OMRF) found that the unc-16 gene of the roundworm Caenorhabditis elegans encodes a gatekeeper that restricts flow of cellular organelles from the cell body to the axon, a long, narrow extension that neurons use for signaling.

Rush University Medical Center scientists home in on cause of osteoarthritis pain
Researchers at Rush University Medical Center, in collaboration with researchers at Northwestern University, have identified a molecular mechanism central to the development of osteoarthritis (OA) pain, a finding that could have major implications for future treatment of this often-debilitating condition.

Research shows diabetes drug improves memory
An FDA-approved drug initially used to treat insulin resistance in diabetics has shown promise as a way to improve cognitive performance in some people with Alzheimer's disease.
More Neuronal Signaling Current Events and Neuronal Signaling News Articles

© 2015