Science Current Events | Science News | Brightsurf.com
 

A blue whirlpool in The River

August 01, 2012

The galaxy NGC 1187 [1] is seen almost face-on, which gives us a good view of its spiral structure. About half a dozen prominent spiral arms can be seen, each containing large amounts of gas and dust. The bluish features in the spiral arms indicate the presence of young stars born out of clouds of interstellar gas.

Looking towards the central regions, we see the bulge of the galaxy glowing yellow. This part of the galaxy is mostly made up of old stars, gas and dust. In the case of NGC 1187, rather than a round bulge, there is a subtle central bar structure. Such bar features are thought to act as mechanisms that channel gas from the spiral arms to the centre, enhancing star formation there.

Around the outside of the galaxy many much fainter and more distant galaxies can also be seen. Some even shine right through the disc of NGC 1187 itself. Their mostly reddish hues contrast with the pale blue star clusters of the much closer object.

NGC 1187 looks tranquil and unchanging, but it has hosted two supernovae explosions since 1982. A supernova is a violent stellar explosion, resulting from the death of either a massive star or a white dwarf in a binary system [2]. Supernovae are amongst the most energetic events in the Universe and are so bright that they often briefly outshine an entire galaxy before fading from view over several weeks or months. During this short period a supernova can radiate as much energy as the Sun is expected to emit over its entire life span.

In October 1982, the first supernova seen in NGC 1187 - SN 1982R [3] was discovered at ESO's La Silla Observatory and more recently, in 2007, the amateur astronomer Berto Monard in South Africa spotted another supernova in this galaxy - SN 2007Y. A team of astronomers subsequently performed a detailed study and monitored SN 2007Y for about a year using many different telescopes [4]. This new image of NGC 1187 was created from observations taken as part of this study and the supernova can be seen, long after the time of maximum brightness, near the bottom of the image.

These data were acquired using the FORS1 instrument attached to the ESO's Very Large Telescope at the Paranal Observatory in Chile.

###

Notes

[1] This galaxy was discovered in England by William Herschel in 1784.

[2] One class of supernova explosions occur at the end of a massive star's lifetime - stars more massive than eight solar masses - when its nuclear fuel is exhausted and the star is not longer able to counteract gravitational collapse, producing a violent explosion. Alternatively, a supernova explosion can also occur in a binary star system, in which a carbon-oxygen white dwarf is pulling matter from a higher-mass companion star. If enough matter is transferred, the star will begin to collapse, producing the supernova explosion.

[3] The International Astronomical Union is responsible for naming supernovae after they are discovered. The name is formed by the year of discovery, followed by a one or two letter designation. The first 26 supernovae of the year get an upper case letter from A to Z. Subsequent supernovae are designated with two lower-case letters.

[4] Further information about SN 2007Y is available in a paper by Stritzinger et al. (http://arxiv.org/pdf/0902.0609v2.pdf)

More information

The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/

Other images taken with the VLT: http://www.eso.org/public/images/archive/search/?adv=&facility=31

ESO


Related Supernova Current Events and Supernova News Articles


A beautiful instance of stellar ornamentation
In this image from ESO's Very Large Telescope (VLT), light from blazing blue stars energises the gas left over from the stars' recent formation.

Proof that ancient supernovae zapped Earth sparks hunt for after effects
Two new papers appearing in the journal Nature this week are "slam-dunk" evidence that energies from supernovae have buffeted our planet, according to astrophysicist Adrian Melott of the University of Kansas.

Gravitational wave search provides insights into galaxy evolution and mergers
New results from NANOGrav - the North American Nanohertz Observatory for Gravitational Waves - establish astrophysically significant limits in the search for low-frequency gravitational waves.

Magnetar could have boosted explosion of extremely bright supernova
Calculations by scientists have found highly magnetized, rapidly spinning neutron stars called magnetars could explain the energy source behind two extremely unusual stellar explosions.

Tiny, ancient galaxy preserves record of catastrophic event
The lightest few elements in the periodic table formed minutes after the Big Bang. Heavier chemical elements are created by stars, either from nuclear fusion in their interiors or in catastrophic explosions.

Caught for the first time: The early flash of an exploding star
NASA's planet hunter, the Kepler space telescope, has captured the brilliant flash of an exploding star's shock wave--what astronomers call the "shock breakout" of a supernova--for the first time in visible light wavelengths.

Caught in the act: UW astronomers find a rare supernova 'impostor' in a nearby galaxy
Breanna Binder, a University of Washington postdoctoral researcher in the Department of Astronomy and lecturer in the School of STEM at UW Bothell, spends her days pondering X-rays.

Examining how terrestrial life's building blocks may have first formed
How did life begin? This is one of the most fundamental questions scientists puzzle over. To address it, they have to look not just back to the primordial Earth, but out into space. Now, scientists propose in the Journal of the American Chemical Society a new set of cosmic chemical reactions that could have contributed to the formation of life on our planet.

A violent wind blown from the heart of a galaxy tells the tale of a merger
An international team led by a researcher from Hiroshima University has succeeded in revealing the detailed structure of a massive ionized gas outflow streaming from the starburst galaxy NGC 6240.

The Milky Way's clean and tidy galactic neighbor
IC 1613 is a dwarf galaxy in the constellation of Cetus (The Sea Monster). This VST image shows the galaxy's unconventional beauty, all scattered stars and bright pink gas, in great detail.
More Supernova Current Events and Supernova News Articles

© 2017 BrightSurf.com