Science Current Events | Science News |

Research could lead to improved oil recovery, better environmental cleanup

August 03, 2012
CORVALLIS, Ore. - Researchers have taken a new look at an old, but seldom-used technique developed by the petroleum industry to recover oil, and learned more about why it works, how it could be improved, and how it might be able to make a comeback not only in oil recovery but also environmental cleanup.

The technology, called "microbial enhanced oil recovery," was first developed decades ago, but oil drillers largely lost interest in it due to its cost, inconsistent results and a poor understanding of what was actually happening underground.

The new findings by engineers at Oregon State University, published in the Journal of Petroleum Science and Engineering, could help change that. This may allow the oil industry not only to produce more oil from their existing wells, but also find applications in cleaning up petroleum spills and contaminants.

"This approach of using microbes to increase oil recovery was used somewhat in the 1980s when oil prices were very high, but the field results weren't very consistent and it was expensive," said Dorthe Wildenschild, an associate professor in the OSU School of Chemical, Biological and Environmental Engineering. "It's seldom used now as a result."

Oil drilling has always been difficult - it's not as simple as drilling a hole and watching the petroleum gush out of the ground.

That may happen for a while, but as a secondary step, water is often injected into the well to help flush out more oil. Such production techniques generally recover only one-third to one-half of the oil originally present in a reservoir.

A third approach sometimes used after water injection is to inject microbes into the well and "feed" them with sugars such as molasses to encourage their growth. This can clog some pores and in others has a "surfactant" effect, loosening the oil from the surface it clings to, much as a dishwasher detergent loosens grease from a pan.

"By clogging up some pores and helping oil move more easily through others, these approaches can in theory be used with water flushing to help recover quite a bit more oil," Wildenschild said.

The surfactant can be man-made, or microbes can be used to produce it at a lower cost. However, getting a particular culture of microbes to produce the biosurfactant under harsh field conditions is tricky.

"It's complicated, you have to use just the right microbes, and feed them just the right foods, to accomplish what you want to do," Wildenschild said.

In OSU laboratory experiments, Ryan Armstrong, a recent doctoral graduate at OSU, found that the clogging mechanism is the simplest and most effective approach to use, although combining it with the biosurfactant technology achieved optimal oil recovery.

A better fundamental understanding of this process - along with higher oil prices that better reward efforts to recover more oil - could lead to renewed interest in the technology on a commercial basis, the OSU researchers said, and make oil recovery more productive. As an extra benefit, the concepts might also work well to help remove or clean up underground contaminants, they said.


This work was supported by the Petroleum Research Fund of the American Chemical Society.

Editor's Note: A digital image demonstrating improved oil recovery is available online:

Oregon State University

Related Oil Recovery Current Events and Oil Recovery News Articles

How much water do US fracking operations really use?
The oil and gas extraction method called hydraulic fracturing remains controversial for multiple reasons, one of which is its water use.

How much water does US fracking really use?
Energy companies used nearly 250 billion gallons of water to extract unconventional shale gas and oil from hydraulically fractured wells in the United States between 2005 and 2014, a new Duke University study finds.

Queen's researchers develop technology to reduce cost of purifying natural gas
Researchers at Queen's University Belfast have developed a cutting-edge method of reducing the carbon dioxide content of natural gas, a process of major economic and environmental importance in the oil and gas industry.

Oklahoma earthquakes linked to oil and gas drilling
Stanford geophysicists have identified the triggering mechanism responsible for the recent spike of earthquakes in parts of Oklahoma-a crucial first step in eventually stopping them.

'Myths' persist about the increase in human-caused seismic activity
Seismologists studying the recent dramatic upswing in earthquakes triggered by human activity want to clear up a few common misconceptions about the trend.

Tortuosity for fluid flow in 2-dimensional pore fractal models of porous media
Dr. Liang Luo and associate prof. Jianchao Cai, a renowned researcher on fractal and capillarity and guest chief editor of FRACTALS, have published their latest paper entitled Numerical simulation of tortuosity for fluid flow in two-dimensional pore fractal models of porous media.

Asphaltene analysis takes a giant step
Rice University researchers have developed an easy and accurate technique to detect and quantify the amount of asphaltene precipitated from crude oils, which bedevils the oil industry by clogging wells and flow lines.

Cheap asphalt provides 'green' carbon capture
The best material to keep carbon dioxide from natural gas wells from fouling the atmosphere may be a derivative of asphalt, according to Rice University scientists.

Foam favorable for oil extraction
A Rice University laboratory has provided proof that foam may be the right stuff to maximize enhanced oil recovery (EOR).

Capturing carbon to produce more oil: Climate solution or folly?
Any method that leads to the production of more oil seems counter to the prevailing wisdom on climate change that says use of more greenhouse-gas-emitting fuel is detrimental.
More Oil Recovery Current Events and Oil Recovery News Articles

Fundamentals of Enhanced Oil Recovery

Fundamentals of Enhanced Oil Recovery
by Society of Petroleum Engineers

A revision of the 1989 classic, Enhanced Oil Recovery by Larry Lake, this text, Fundamentals of Enhanced Oil Recovery, retains the original work's emphasis on fractional flow theory and phase behavior to explain enhanced oil recovery (EOR) processes. There is additional coverage on cutting edge (or current) topics, such as low-salinity EOR, steam-assisted gravity drainage, and expanded coverage on thermodynamics and foam EOR. With its frequent reinforcement of two fundamental EOR principles, lowering the mobility ratio and increasing the capillary number, it is an excellent resource for undergraduate classes.

Modern Chemical Enhanced Oil Recovery: Theory and Practice

Modern Chemical Enhanced Oil Recovery: Theory and Practice
by James Sheng (Author)

Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques to the field's productive life generally by injecting water or gas to displace oil and drive it to a production wellbore, resulting in the recovery of 20 to 40 percent of the original oil in place.

In the past two decades, major oil companies and research organizations have conducted extensive...

Enhanced Oil Recovery Field Case Studies

Enhanced Oil Recovery Field Case Studies
by James Sheng (Editor)

Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, "smart water"-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applications in a variety of oil fields. The case studies cover practical problems, underlying theoretical and modeling methods, operational parameters, solutions and sensitivity studies, and performance optimization strategies,...


by Gavin Bridge (Author), Philippe Le Billon (Author)

Oil pulses through our daily lives. It is the plastic we touch, the food we eat, and the way we move. Oil politics in the twentieth century was about the management of abundance, state power and market growth. The legacy of this age of plenty includes declining conventional oil reserves, volatile prices, climate change, and enduring poverty in many oil rich countries. The oil sector is now in need of reform. Yet no one seems at the helm, leaving a vital source of energy at the whim of dictators, speculators and corporate operators, and our societies locked into unsustainable growth models. In this in-depth primer to the world's wealthiest industry, authors Gavin Bridge and Philippe Le Billon take a fresh look at the contemporary geopolitics of oil. Going beyond simple assertions of peak...

Fundamentals of Enhanced Oil Recovery

Fundamentals of Enhanced Oil Recovery
by H. Van Poolen (Author)

Outside dust cover does have some slight scuffing along corners and edges is it. Very nice overall.

Polymer-Improved Oil Recovery

Polymer-Improved Oil Recovery
by K.S. Sorbie (Author)

The importance of oil in the world economy cannot be overstated, and methods for recovering oil will be the subject of much scientific and engineering research for many years to come. Even after the application of primary depletion and secondary recovery processes (usually waterflooding), much oil usually remains in a reservoir, and indeed in some heterogeneous reservoir systems as much as 70% of the original oil may remain. Thus, there is an enormous incentive for the development of improved or enhanced methods of oil recovery, aimed at recovering some portion of this remainil)g oil. The techniques used range from 'improved' secondary flooding methods (including polymer and certain gas injection processes) through to 'enhanced' or 'tertiary' methods such as chemical (surfactant, caustic,...

Enhanced oil recovery (SPE textbook series) Volume 6

Enhanced oil recovery (SPE textbook series) Volume 6
by Don W. Green (Author), G. Paul Willhite (Author)

Enhanced oil recovery (SPE textbook series) Volume 6

Enhanced Oil Recovery: Field Planning and Development Strategies

Enhanced Oil Recovery: Field Planning and Development Strategies
by Vladimir Alvarado (Author), Eduardo Manrique (Author)

Enhanced-Oil Recovery (EOR) evaluations focused on asset acquisition or rejuvenation involve a combination of complex decisions, using different data sources. EOR projects have been traditionally associated with high CAPEX and OPEX, as well as high financial risk, which tend to limit the number of EOR projects launched. In this book, the authors propose workflows for EOR evaluations that account for different volumes and quality of information. This flexible workflow has been successfully applied to oil property evaluations and EOR feasibility studies in many oil reservoirs. The methodology associated with the workflow relies on traditional (look-up tables, XY correlations, etc.) and more advanced (data mining for analog reservoir search and geology indicators) screening methods,...

Enhanced Oil Recovery

Enhanced Oil Recovery
by Larry W. Lake (Author)

Book by Lake, Larry W.

Enhanced Oil Recovery

Enhanced Oil Recovery
by Marcel Latil (Author)

© 2015