Science Current Events | Science News | Brightsurf.com
 

Photonic gels are colorful sensors

October 11, 2012
Materials scientists at Rice University and the Massachusetts Institute of Technology (MIT) have created very thin color-changing films that may serve as part of inexpensive sensors for food spoilage or security, multiband optical elements in laser-driven systems and even as part of high-contrast displays.

The new work led by Rice materials scientist Ned Thomas combines polymers into a unique, self-assembled metamaterial that, when exposed to ions in a solution or in the environment, changes color depending on the ions' ability to infiltrate the hydrophilic (water-loving) layers.

The research was published in the American Chemical Society journal ACS Nano.

The micron-thick material called a photonic gel, far thinner than a human hair, is so inexpensive to make that, Thomas said, "We could cover an area the size of a football field with this film for about a hundred dollars."

But for practical applications, much smaller pieces would do. "Suppose you want a food sensor," said Thomas, the William and Stephanie Sick Dean of Rice's George R. Brown School of Engineering and former chair of the Department of Materials Science and Engineering at MIT. "If it's inside a sealed package and the environment in that package changes because of contamination or aging or exposure to temperature, an inspector would see that sensor change from blue to red and know immediately the food is spoiled."

Such visual cues are good, he said, "especially when you need to look at a lot of them. And you can read these sensors with low tech, either with your own eyes or a spectrophotometer to scan things."

The films are made of nanoscale layers of hydrophobic polystyrene and hydrophilic poly(2-vinyl pyridine). In the liquid solution, the polymer molecules are diffused, but when the liquid is applied to a surface and the solvent evaporates, the block copolymer molecules self-assemble into a layered structure.

The polystyrene molecules clump together to keep water molecules out, while the poly(2-vinyl pyridine), P2VP for short, forms its own layers between the polystyrene. On a substrate, the layers form into a transparent stack of alternating "nano-pancakes." "The beauty of self-assembly is that it's simultaneous, all the layers forming at once," Thomas said.

The researchers exposed their films to various solutions and found different colors depending on how much solvent was taken up by the P2VP layers. For example with a chlorine/oxide/iron solution that is not readily absorbed by the P2VP, the film is transparent, Thomas said. "When we take that out, wash the film and bring in a new solution with a different ion, the color changes."

The researchers progressively turned a clear film to blue (with thiocyanate), to green (iodine), to yellow (nitrate), to orange (bromine) and finally to red (chlorine). In each case, the changes were reversible.

Thomas explained that the direct exchange of counterions from the solution to the P2VP expands those layers and creates a photonic band gap - the light equivalent of a semiconducting band gap - that allows color in a specific wavelength to be reflected. "The wavelengths in that photonic band gap are forbidden to propagate," he said, which allows the gels to be tuned to react in specific ways.

"Imagine a solid in which you create a band gap everywhere but along a 3-D path, and let's say that path is a narrowly defined region you can fabricate within this otherwise photonic material. Once you put light in that path, it is forbidden to leave because it can't enter the material, due to the band gap.

"This is called molding the flow of light," he said. "These days in photonics, people are thinking about light as though it were water. That is, you can put it in these tiny pipes. You can turn light around corners that are very sharp. You can put it where you want it, keep it from where you don't want it. The plumbing of light has been much easier than in the past, due to photonics, and in photonic crystals, due to band gaps."

Co-authors of the paper are Rice research scientist Jae-Hwang Lee and MIT postdoctoral researchers Ho Sun Lim and Joseph Walish.

The work was supported by the U.S. Army Research Office, the U.S. Air Force and the Korea Research Foundation, funded by the Korean government.

Rice University


Related Photonic Current Events and Photonic News Articles


Quantum cryptography at the speed of light: Researchers design first all-photonic repeaters
Imagine having your MRI results sent directly to your phone, with no concern over the security of your private health data.

Quantum teleportation on a chip
The core circuits of quantum teleportation, which generate and detect quantum entanglement, have been successfully integrated into a photonic chip by an international team of scientists from the universities of Bristol, Tokyo, Southampton and NTT Device Technology Laboratories.

Cooling massive objects to the quantum ground state
Cooling of macroscopic and mesoscopic objects to the quantum ground states are of great interests not only for fundamental study of quantum theory but also for the broad applications in quantum information processing and high-precision metrology.

Next important step toward quantum computer
Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another.

Solving molybdenum disulfide's 'thin' problem
The promising new material molybdenum disulfide (MoS2) has an inherent issue that's steeped in irony. The material's greatest asset--its monolayer thickness--is also its biggest challenge.

New optical materials break digital connectivity barriers
From computers, tablets, and smartphones to cars, homes, and public transportation, our world is more digitally connected every day.

Super-resolution microscopes reveal the link between genome packaging and cell pluripotency
In 1953 Watson and Crick first published the discovery of the double helix structure of the DNA. They were able to visualize the DNA structure by means of X-Ray diffraction.

Engineers create chameleon-like artificial 'skin' that shifts color on demand
Borrowing a trick from nature, engineers from the University of California at Berkeley have created an incredibly thin, chameleon-like material that can be made to change color -- on demand -- by simply applying a minute amount of force.

Optical fibers light the way for brain-like computing
Computers that function like the human brain could soon become a reality thanks to new research using optical fibres made of speciality glass.

Breakthrough in nonlinear optics research
A method to selectively enhance or inhibit optical nonlinearities in a chip-scale device has been developed by scientists, led by the University of Sydney.
More Photonic Current Events and Photonic News Articles

Fundamentals of Photonics

Fundamentals of Photonics
by Bahaa E. A. Saleh (Author), Malvin Carl Teich (Author)


Now in a new full-color edition, Fundamentals of Photonics, Second Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of photons and atoms, and semiconductor optics. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics,
such as Fourier optics and holography, guided-wave and fiber optics, semiconductor sources and detectors, electro-optic and acousto-optic devices, nonlinear optical devices, optical...

Photonic Processing of Microwave Signals: For applications in radar systems

Photonic Processing of Microwave Signals: For applications in radar systems
by Oded Raz (Author)


Photonic processing of microwave signals aims to utilize the many advantages of optical waveguides and devices such as their >THz bandwidth, high EMI tolerance and low weight and volume over traditional microwave devices. These advantages can be best used in the demanding environment of radar systems and even more so in airborne systems. Many radar systems use electronically steered antenna in order to search for targets. raditional phase scanning arrays are limited in there fractional bandwidth and so time scanning arrays are required for large arrays used by radars emitting large bandwidth signals (either very short or phase coded pulses). Due to the advantages described above, it is only natural that photonic True Time Delays (TTDs) will find their way into future radar systems. Such...

Photonic Crystal Fibers: Properties and Applications (Springer Series in Materials Science)

Photonic Crystal Fibers: Properties and Applications (Springer Series in Materials Science)
by F. Poli (Author), A. Cucinotta (Author), S. Selleri (Author)


This book is intended to provide expert guidance through the properties of photonic crystal fibers, with a specific focus on the telecommunication aspects. This is the first book to report a complete overview of photonic crystal fiber analysis and design for telecom applications. The authors believe that photonic crystal fibers can revolutionize the field of guided optics and its applications.

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits
by Larry A. Coldren (Author), Scott W. Corzine (Author), Milan L. Mashanovitch (Author)


Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book will offer brand new and updated material on GaN-based and quantum-dot lasers, photonic IC technology, detectors, modulators and SOAs, DVDs and storage, eye diagrams and BER concepts, and DFB lasers....

Fundamentals of Photonics (Wiley Series in Pure and Applied Optics)

Fundamentals of Photonics (Wiley Series in Pure and Applied Optics)
by Bahaa E. A. Saleh (Author), Malvin C. Teich (Author)


In recent years, photonics has found increasing applications in such areas as communications, signal processing, computing, sensing, display, printing, and energy transport. Now, Fundamentals of Photonics is the first self-contained introductory-level textbook to offer a thorough survey of this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light with matter, and the theory of semiconductor materials and their optical properties.Presented at increasing levels of complexity, these sections serve as building blocks for the treatment of more advanced...

Fundamentals of Microwave Photonics (Wiley Series in Microwave and Optical Engineering)

Fundamentals of Microwave Photonics (Wiley Series in Microwave and Optical Engineering)
by V. J. Urick (Author), Keith J. Williams (Author), Jason D. McKinney (Author)


A comprehensive resource to designing and constructing analog photonic links capable of high RF performance

Fundamentals of Microwave Photonics provides a comprehensive description of analog optical links from basic principles to applications.  The book is organized into four parts. The first begins with a historical perspective of microwave photonics, listing the advantages of fiber optic links and delineating analog vs. digital links. The second section covers basic principles associated with microwave photonics in both the RF and optical domains.  The third focuses on analog modulation formats—starting with a concept, deriving the RF performance metrics from basic physical models, and then analyzing issues specific to each format. The final part examines applications...

Optoelectronics & Photonics: Principles & Practices (2nd Edition)

Optoelectronics & Photonics: Principles & Practices (2nd Edition)
by Safa O. Kasap (Author)


For one-semester, undergraduate-level courses in Optoelectronics and Photonics, in the departments of electrical engineering, engineering physics, and materials science and engineering.
This text takes a fresh look at the enormous developments in electo-optic devices and associated materials.

Nonlinear Optics and Photonics

Nonlinear Optics and Photonics
by Guang S. He (Author)


This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics.

Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances...

Photonics Essentials, Second Edition

Photonics Essentials, Second Edition
by Thomas Pearsall (Author)


An Enlightening Guide to Photonics This unique book teaches photonics through the hands-on measurement techniques common to all photonic devices. Perfect for students and engineers looking for practical expertise rather than abstract theory, this tutorial does more than explain the workings of photonic applications in standard devices like lasers and photodetectors--it offers worked examples of measurement and characterization problems. Filled with these real-world examples that feature commercially available instruments, this practice-based book enables you to analyze, characterize, and handle any kind of photonic device.Photonics Essentials, Second Edition covers:Properties of electrons and photonsPhotodiodesElectrical response time of diodesPhotoconductivityLight-emitting diodesOrganic...

Photonics: A Short Course (Undergraduate Lecture Notes in Physics)

Photonics: A Short Course (Undergraduate Lecture Notes in Physics)
by Vittorio Degiorgio (Author), Ilaria Cristiani (Author)


This book will serve as a concise, self-contained, up-to-date introduction to Photonics, to be used as a textbook for undergraduate students or as a reference book for researchers and professionals. Blending theory with technical descriptions, the book covers a wide range of topics, including the general mechanism of laser action, continuous and pulsed laser operation, optical propagation in isotropic and anisotropic media, operating principles and structure of passive optical components, electro-optical and acousto-optical modulation, solid-state lasers, semiconductor lasers and LEDs, nonlinear optics, and optical fiber components and devices. The book concludes with an overview of applications, including optical communications, telemetry and sensing, industrial and biomedical...

© 2015 BrightSurf.com