Science Current Events | Science News |

Photonic gels are colorful sensors

October 11, 2012
Materials scientists at Rice University and the Massachusetts Institute of Technology (MIT) have created very thin color-changing films that may serve as part of inexpensive sensors for food spoilage or security, multiband optical elements in laser-driven systems and even as part of high-contrast displays.

The new work led by Rice materials scientist Ned Thomas combines polymers into a unique, self-assembled metamaterial that, when exposed to ions in a solution or in the environment, changes color depending on the ions' ability to infiltrate the hydrophilic (water-loving) layers.

The research was published in the American Chemical Society journal ACS Nano.

The micron-thick material called a photonic gel, far thinner than a human hair, is so inexpensive to make that, Thomas said, "We could cover an area the size of a football field with this film for about a hundred dollars."

But for practical applications, much smaller pieces would do. "Suppose you want a food sensor," said Thomas, the William and Stephanie Sick Dean of Rice's George R. Brown School of Engineering and former chair of the Department of Materials Science and Engineering at MIT. "If it's inside a sealed package and the environment in that package changes because of contamination or aging or exposure to temperature, an inspector would see that sensor change from blue to red and know immediately the food is spoiled."

Such visual cues are good, he said, "especially when you need to look at a lot of them. And you can read these sensors with low tech, either with your own eyes or a spectrophotometer to scan things."

The films are made of nanoscale layers of hydrophobic polystyrene and hydrophilic poly(2-vinyl pyridine). In the liquid solution, the polymer molecules are diffused, but when the liquid is applied to a surface and the solvent evaporates, the block copolymer molecules self-assemble into a layered structure.

The polystyrene molecules clump together to keep water molecules out, while the poly(2-vinyl pyridine), P2VP for short, forms its own layers between the polystyrene. On a substrate, the layers form into a transparent stack of alternating "nano-pancakes." "The beauty of self-assembly is that it's simultaneous, all the layers forming at once," Thomas said.

The researchers exposed their films to various solutions and found different colors depending on how much solvent was taken up by the P2VP layers. For example with a chlorine/oxide/iron solution that is not readily absorbed by the P2VP, the film is transparent, Thomas said. "When we take that out, wash the film and bring in a new solution with a different ion, the color changes."

The researchers progressively turned a clear film to blue (with thiocyanate), to green (iodine), to yellow (nitrate), to orange (bromine) and finally to red (chlorine). In each case, the changes were reversible.

Thomas explained that the direct exchange of counterions from the solution to the P2VP expands those layers and creates a photonic band gap - the light equivalent of a semiconducting band gap - that allows color in a specific wavelength to be reflected. "The wavelengths in that photonic band gap are forbidden to propagate," he said, which allows the gels to be tuned to react in specific ways.

"Imagine a solid in which you create a band gap everywhere but along a 3-D path, and let's say that path is a narrowly defined region you can fabricate within this otherwise photonic material. Once you put light in that path, it is forbidden to leave because it can't enter the material, due to the band gap.

"This is called molding the flow of light," he said. "These days in photonics, people are thinking about light as though it were water. That is, you can put it in these tiny pipes. You can turn light around corners that are very sharp. You can put it where you want it, keep it from where you don't want it. The plumbing of light has been much easier than in the past, due to photonics, and in photonic crystals, due to band gaps."

Co-authors of the paper are Rice research scientist Jae-Hwang Lee and MIT postdoctoral researchers Ho Sun Lim and Joseph Walish.

The work was supported by the U.S. Army Research Office, the U.S. Air Force and the Korea Research Foundation, funded by the Korean government.

Rice University

Related Photonic Current Events and Photonic News Articles

A mollusk of a different stripe
The blue-rayed limpet is a tiny mollusk that lives in kelp beds along the coasts of Norway, Iceland, the United Kingdom, Portugal, and the Canary Islands.

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells
The fovea centralis, or fovea for short, sits in the middle of the Macula lutea (or macula) of the retina, where the slender, funnel-like ocular cones are especially closely packed together.

Team led by UCLA and Columbia engineers uses disorder to control light on a nanoscale
A breakthrough by a team of researchers from UCLA, Columbia University and other institutions could lead to the more precise transfer of information in computer chips, as well as new types of optical materials for light emission and lasers.

New method to generate arbitrary optical pulses
Scientists from the University of Southampton have developed a new technique to generate more powerful, more energy efficient and low-cost pulsed lasers.

Breakthrough lights up metamaterials
A City College of New York led-team has successfully demonstrated how to both enhance light emission and capture light from metamaterials embedded with light emitting nanocrystals.

Race of the electrons
It is easy to measure electric current. But it is extremely hard to watch the individual electrons which make up this current.

Toward quantum chips
A team of researchers has built an array of light detectors sensitive enough to register the arrival of individual light particles, or photons, and mounted them on a silicon optical chip.

Photonic booms may help illuminate astronomical secrets
If you sweep a laser pointer across the Moon fast enough, you can create spots that actually move faster than light. Anyone can do it.

Control on shape of light particles opens the way to 'quantum internet'
In the same way as we now connect computers in networks through optical signals, it could also be possible to connect future quantum computers in a 'quantum internet'.

Stacking Two-Dimensional Materials May Lower Cost of Semiconductor Devices
A team of researchers led by North Carolina State University has found that stacking materials that are only one atom thick can create semiconductor junctions that transfer charge efficiently, regardless of whether the crystalline structure of the materials is mismatched - lowering the manufacturing cost for a wide variety of semiconductor devices such as solar cells, lasers and LEDs.
More Photonic Current Events and Photonic News Articles

Fundamentals of Photonics

Fundamentals of Photonics
by Bahaa E. A. Saleh (Author), Malvin Carl Teich (Author)

Now in a new full-color edition, Fundamentals of Photonics, Second Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of photons and atoms, and semiconductor optics. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics,
such as Fourier optics and holography, guided-wave and fiber optics, semiconductor sources and detectors, electro-optic and acousto-optic devices, nonlinear optical devices, optical...

  Photonics Buyers Guide 2015 (Photonics Directory)
by Optical Pub Co (Publisher)

Handbook of Photonics in Biomedical Engineering

Handbook of Photonics in Biomedical Engineering
by Donghyun Kim (Editor), Aaron H. P. Ho (Editor), Michael Somekh (Editor)

Nanophotonics has emerged rapidly into technological mainstream with the advent and maturity of nanotechnology available in photonics and enabled many new exciting applications in the area of biomedical science and engineering that were unimagined even a few years ago with conventional photonic engineering techniques. Handbook of Nanophotonics in Biomedical Engineering is intended to be a reliable resource to a wealth of information on nanophotonics that can inspire readers by detailing emerging and established possibilities of nanophotonics in biomedical science and engineering applications. This comprehensive reference presents not only the basics of nanophotonics but also explores recent experimental and clinical methods used in biomedical and bioengineering research. Each...

Fundamentals of Microwave Photonics (Wiley Series in Microwave and Optical Engineering)

Fundamentals of Microwave Photonics (Wiley Series in Microwave and Optical Engineering)
by V. J. Urick (Author), Keith J. Williams (Author), Jason D. McKinney (Author)

A comprehensive resource to designing and constructing analog photonic links capable of high RF performance

Fundamentals of Microwave Photonics provides a comprehensive description of analog optical links from basic principles to applications.  The book is organized into four parts. The first begins with a historical perspective of microwave photonics, listing the advantages of fiber optic links and delineating analog vs. digital links. The second section covers basic principles associated with microwave photonics in both the RF and optical domains.  The third focuses on analog modulation formats—starting with a concept, deriving the RF performance metrics from basic physical models, and then analyzing issues specific to each format. The final part examines applications...

Photonics Essentials, Second Edition

Photonics Essentials, Second Edition
by Thomas Pearsall (Author)

An Enlightening Guide to Photonics This unique book teaches photonics through the hands-on measurement techniques common to all photonic devices. Perfect for students and engineers looking for practical expertise rather than abstract theory, this tutorial does more than explain the workings of photonic applications in standard devices like lasers and photodetectors--it offers worked examples of measurement and characterization problems. Filled with these real-world examples that feature commercially available instruments, this practice-based book enables you to analyze, characterize, and handle any kind of photonic device.Photonics Essentials, Second Edition covers:Properties of electrons and photonsPhotodiodesElectrical response time of diodesPhotoconductivityLight-emitting diodesOrganic...

Photonic Processing of Microwave Signals: For applications in radar systems

Photonic Processing of Microwave Signals: For applications in radar systems
by Oded Raz (Author)

Photonic processing of microwave signals aims to utilize the many advantages of optical waveguides and devices such as their >THz bandwidth, high EMI tolerance and low weight and volume over traditional microwave devices. These advantages can be best used in the demanding environment of radar systems and even more so in airborne systems. Many radar systems use electronically steered antenna in order to search for targets. raditional phase scanning arrays are limited in there fractional bandwidth and so time scanning arrays are required for large arrays used by radars emitting large bandwidth signals (either very short or phase coded pulses). Due to the advantages described above, it is only natural that photonic True Time Delays (TTDs) will find their way into future radar systems. Such...

Photonics, Volume 1: Fundamentals of Photonics and Physics (A Wiley-Science Wise Co-Publication)

Photonics, Volume 1: Fundamentals of Photonics and Physics (A Wiley-Science Wise Co-Publication)
by David L. Andrews (Author)

Covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonics.

This volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Polarization States; Quantum Electrodynamics; Quantum Information and Computing; Quantum Optics; Resonance Energy Transfer; Surface Optics; Ultrafast Pulse Phenomena.

Comprehensive and...

Advanced Digital Optical Communications, Second Edition (Optics and Photonics)

Advanced Digital Optical Communications, Second Edition (Optics and Photonics)
by Le Nguyen Binh (Author)

This second edition of Digital Optical Communications provides a comprehensive treatment of the modern aspects of coherent homodyne and self-coherent reception techniques using algorithms incorporated in digital signal processing (DSP) systems and DSP-based transmitters to overcome several linear and nonlinear transmission impairments and frequency mismatching between the local oscillator and the carrier, as well as clock recovery and cycle slips. These modern transmission systems have emerged as the core technology for Tera-bits per second (bps) and Peta-bps optical Internet for the near future. Featuring extensive updates to all existing chapters, Advanced Digital Optical Communications, Second Edition: Contains new chapters on optical fiber structures and propagation, optical...

Photonics: A Short Course (Undergraduate Lecture Notes in Physics)

Photonics: A Short Course (Undergraduate Lecture Notes in Physics)
by Vittorio Degiorgio (Author), Ilaria Cristiani (Author)

This book will serve as a concise, self-contained, up-to-date introduction to Photonics, to be used as a textbook for undergraduate students or as a reference book for researchers and professionals. Blending theory with technical descriptions, the book covers a wide range of topics, including the general mechanism of laser action, continuous and pulsed laser operation, optical propagation in isotropic and anisotropic media, operating principles and structure of passive optical components, electro-optical and acousto-optical modulation, solid-state lasers, semiconductor lasers and LEDs, nonlinear optics, and optical fiber components and devices. The book concludes with an overview of applications, including optical communications, telemetry and sensing, industrial and biomedical...

Photonic Crystals: Molding the Flow of Light

Photonic Crystals: Molding the Flow of Light
by John D. Joannopoulos (Author), Robert D. Meade (Author), Joshua N. Winn (Author)

Photonic Crystals is the first book to address one of the newest and most exciting developments in physics--the discovery of photonic band-gap materials and their use in controlling the propagation of light. Recent discoveries show that many of the properties of an electron in a semiconductor crystal can apply to a particle of light in a photonic crystal. This has vast implications for physicists, materials scientists, and electrical engineers and suggests such possible developments as an entirely optical computer. Combining cutting-edge research with the basic theoretical concepts behind photonic crystals, the authors present to undergraduates and researchers a concise, readable, and comprehensive text on these novel materials and their applications.The first chapters develop the...

© 2015