Science Current Events | Science News | Brightsurf.com
 

Elevated Indoor Carbon Dioxide Impairs Decision-Making Performance

October 18, 2012

Overturning decades of conventional wisdom, researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have found that moderately high indoor concentrations of carbon dioxide (CO2) can significantly impair people's decision-making performance. The results were unexpected and may have particular implications for schools and other spaces with high occupant density.

"In our field we have always had a dogma that CO2 itself, at the levels we find in buildings, is just not important and doesn't have any direct impacts on people," said Berkeley Lab scientist William Fisk, a co-author of the study, which was published in Environmental Health Perspectives online last month. "So these results, which were quite unambiguous, were surprising." The study was conducted with researchers from State University of New York (SUNY) Upstate Medical University.

On nine scales of decision-making performance, test subjects showed significant reductions on six of the scales at CO2 levels of 1,000 parts per million (ppm) and large reductions on seven of the scales at 2,500 ppm. The most dramatic declines in performance, in which subjects were rated as "dysfunctional," were for taking initiative and thinking strategically. "Previous studies have looked at 10,000 ppm, 20,000 ppm; that's the level at which scientists thought effects started," said Berkeley Lab scientist Mark Mendell, also a co-author of the study. "That's why these findings are so startling."

While the results need to be replicated in a larger study, they point to possible economic consequences of pursuing energy efficient buildings without regard to occupants. "As there's a drive for increasing energy efficiency, there's a push for making buildings tighter and less expensive to run," said Mendell. "There's some risk that, in that process, adverse effects on occupants will be ignored. One way to make sure occupants get the attention they deserve is to point out adverse economic impacts of poor indoor air quality. If people can't think or perform as well, that could obviously have adverse economic impacts."

The primary source of indoor CO2 is humans. While typical outdoor concentrations are around 380 ppm, indoor concentrations can go up to several thousand ppm. Higher indoor CO2 concentrations relative to outdoors are due to low rates of ventilation, which are often driven by the need to reduce energy consumption. In the real world, CO2 concentrations in office buildings normally don't exceed 1,000 ppm, except in meeting rooms, when groups of people gather for extended periods of time.

In classrooms, concentrations frequently exceed 1,000 ppm and occasionally exceed 3,000 ppm. CO2 at these levels has been assumed to indicate poor ventilation, with increased exposure to other indoor pollutants of potential concern, but the CO2 itself at these levels has not been a source of concern. Federal guidelines set a maximum occupational exposure limit at 5,000 ppm as a time-weighted average for an eight-hour workday.

Fisk decided to test the conventional wisdom on indoor CO2 after coming across two small Hungarian studies reporting that exposures between 2,000 and 5,000 ppm may have adverse impacts on some human activities.

Fisk, Mendell, and their colleagues, including Usha Satish at SUNY Upstate Medical University, assessed CO2 exposure at three concentrations: 600, 1,000 and 2,500 ppm. They recruited 24 participants, mostly college students, who were studied in groups of four in a small office-like chamber for 2.5 hours for each of the three conditions. Ultrapure CO2 was injected into the air supply and mixing was ensured, while all other factors, such as temperature, humidity, and ventilation rate, were kept constant. The sessions for each person took place on a single day, with one-hour breaks between sessions.

Although the sample size was small, the results were unmistakable. "The stronger the effect you have, the fewer subjects you need to see it," Fisk said. "Our effect was so big, even with a small number of people, it was a very clear effect."

Another novel aspect of this study was the test used to assess decision-making performance, the Strategic Management Simulation (SMS) test, developed by SUNY. In most studies of how indoor air quality affects people, test subjects are given simple tasks to perform, such as adding a column of numbers or proofreading text. "It's hard to know how those indicators translate in the real world," said Fisk. "The SMS measures a higher level of cognitive performance, so I wanted to get that into our field of research."

The SMS has been used most commonly to assess effects on cognitive function, such as by drugs, pharmaceuticals or brain injury, and as a training tool for executives. The test gives scenarios-for example, you're the manager of an organization when a crisis hits, what do you do?-and scores participants in nine areas. "It looks at a number of dimensions, such as how proactive you are, how focused you are, or how you search for and use information," said Fisk. "The test has been validated through other means, and they've shown that for executives it is predictive of future income and job level."

Data from elementary school classrooms has found CO2 concentrations frequently near or above the levels in the Berkeley Lab study. Although their study tested only decision making and not learning, Fisk and Mendell say it is possible that students could be disadvantaged in poorly ventilated classrooms, or in rooms in which a large number of people are gathered to take a test. "We cannot rule out impacts on learning," their report says.

The next step for the Berkeley Lab researchers is to reproduce and expand upon their findings. "Our first goal is to replicate this study because it's so important and would have such large implications," said Fisk. "We need a larger sample and additional tests of human work performance. We also want to include an expert who can assess what's going on physiologically."

Until then, they say it's too early to make any recommendations for office workers or building managers. "Assuming it's replicated, it has implications for the standards we set for minimum ventilation rates for buildings," Fisk said. "People who are employers who want to get the most of their workforce would want to pay attention to this."

Funding for this study was provided by SUNY and the state of New York.

Lawrence Berkeley National Laboratory


Related Carbon Dioxide Current Events and Carbon Dioxide News Articles


Better combustion for power generation
In the United States, the use of natural gas for electricity generation continues to grow. The driving forces behind this development?

Hydrothermal vents, methane seeps play enormous role in marine life, global climate
The hydrothermal vents and methane seeps on the ocean floor that were once thought to be geologic and biological oddities are now emerging as a major force in ocean ecosystems, marine life and global climate.

Deep, old water explains why Antarctic Ocean hasn't warmed
The waters surrounding Antarctica may be one of the last places to experience human-driven climate change.

Researchers identify critical factors that determine drought vulnerability of wheat, maize
Researchers led by Lixin Wang, assistant professor of earth sciences in the School of Science at Indiana University-Purdue University Indianapolis, have identified critical information about the environmental variables and agronomic factors that determine the vulnerability of maize and wheat production to drought.

A planet 1,200 light-years away is a good prospect for a habitable world
A distant planet known as Kepler-62f could be habitable, a team of astronomers reports.

Scientists discover methane-producing microbes in California rocks
Deep in vents on the ocean floor, methane-producing microbes feed off chemical reactions between water and rock. Now evidence of this process has been found on land in a freshwater spring in California.

Researchers find higher than expected carbon emissions from inland waterways
Washington State University researchers have found that greenhouse-gas emissions from lakes and inland waterways may be as much as 45 percent greater than previously thought.

New study captures ultrafast motion of proteins
A new study by an international team of researchers, affiliated with Ulsan National Institute of Science and Technology (UNIST) has announced that they have succeeded for the first time in observing the structural changes in carbonic anhydrase.

Rutgers scientists help create world's largest coral gene database
Coral reefs - stunning, critical habitats for an enormous array of prized fish and other species - have survived five major extinction events over the last 250 million years.

Natural regeneration of tropical forests helps global climate mitigation and forest restoration
Climate scientists have long recognized the importance of forest conservation and forest regrowth in climate mitigation and carbon sequestration -- capturing carbon dioxide (CO2) from the atmosphere.
More Carbon Dioxide Current Events and Carbon Dioxide News Articles

Miracle Molecule: Carbon Dioxide, Gas of Life

Miracle Molecule: Carbon Dioxide, Gas of Life
by CFACT


The astonishing story of a simple chemical that made life on Earth possible and continues its work today. Tiny amounts of this miracle molecule not only make life on Earth possible, but rising atmospheric CO2 levels also spur forest and crop growth, help plants survive heat and drought, and feed the world.

Carbon Dioxide Emissions: Between the Sword and the Wall

Carbon Dioxide Emissions: Between the Sword and the Wall
by WBP


The international community has agreed on the Copenhagen Accord that “climate change is one of the greatest challenges of our time.” For them Carbon Dioxide emissions are the greatest reason for this change (Zhao and Du 39). Others argue that it is not a cause, that it is just a coincidence, that actually the Carbon Dioxide emissions are not a threat to the world. During an event hosted by the United States Energy Association, Roger Bezek, a consultant to energy companies, said, “CO2 is basically plant food, and the more CO2 in the environment the better plants do” (Milbank). Even though this is a hot topic nowadays the more fundamental question is: Are we taking care of our planet? And the answer is a very concise NO. There have been efforts to stop the relentless increase in...

In Praise of Carbon: How We’ve Been Misled Into Believing that Carbon Dioxide Causes Climate Change

In Praise of Carbon: How We’ve Been Misled Into Believing that Carbon Dioxide Causes Climate Change
by David Bennett Laing (Author)


If you wring all the water out of us, you and I consist of a little over two thirds carbon dioxide, dry weight, as do all other living things on Earth. Still, more than a few people claim that if we pour this life-giving gas into our atmosphere, we’ll burn up the planet. Is this really true? Many of those people would say, righteously, that I should be ashamed of myself for even asking the question, but that is in fact what this book is all about, asking the question. With “In Praise of Carbon,” I burrow beneath all the doomsday propaganda, scientific and otherwise, in search of the right answer to this question. In doing so, I’ve exposed some rather interesting things. Did you know, for example, that in 1900, the leading atmospheric physicist of the day, Knut Ångström,...

Carbon Dioxide Equilibria and Their Applications

Carbon Dioxide Equilibria and Their Applications
by James N. Butler (Author)


Carbon dioxide, bicarbonate ion, and carbonate ion comprise the most important acid-base system in natural waters, and the equilibria between them regulate the pH of seawater, as well as most rainwater, stream water, river water, and groundwater. Carbon Dioxide Equilibria and Their Applications provides a clear, compact presentation of this topic, which is central to geochemistry and environmental engineering. It emphasizes a rigorous mathematical and thermodynamic basis for calculations and their application to realistic problems.

The book's first four chapters present the basic equations, mathematical techniques for visualizing and manipulating them, and data on equilibrium constants and activity coefficients. These are presented in the general context of acid-base titration and...

Why It's Not Carbon Dioxide After All

Why It's Not Carbon Dioxide After All
by Douglas J Cotton (Author)


Climate Change is not caused by any Greenhouse Effect. This book explains the basics of thermodynamic physics in a way that will help you understand how the world has been so seriously misled into believing carbon dioxide is to blame for the observed global warming. The author presents a sound argument and outline of the "heat creep" process which is what must be supporting surface temperatures on Earth and other planets and he highlights the serious errors in the greenhouse conjecture. This is a "must read" book for anyone who is concerned that mankind is causing the world to warm. It explains natural climate cycles and predicts future global cooling.

The Carbon Dioxide Syndrome

The Carbon Dioxide Syndrome
by Jennifer Stark and Russell Stark (Author)


Learn why changing your breathing can improve your health and well-being through the Butekyo Method. This method will help those with sleep disorders, panic attacks, allergies, hypertension and asthma.

Corrosion Protection against Carbon Dioxide

Corrosion Protection against Carbon Dioxide
by Michael Sch?tze (Editor), Bernd Isecke (Editor), Roman Bender (Editor)


This handy reference compiles the latest data on the corrosion behavior of materials coming into contact with CO2 -- with 95% of the contents previously unpublished.
It is clearly structured according to material, and covers metals, non-metallic inorganic materials and plastics as well as including information about corrosion protection.
The result is a must-have for all engineers and scientists dealing with corrosion problems in CO2-containing environments.


Carbon Dioxide Capture and Storage

Carbon Dioxide Capture and Storage
by United Nations (Author)


This IPCC Special Report describes sources, capture, transport, and storage of CO2. It discusses the costs, economic potential, and societal issues of the technology, including public perception and regulatory aspects. Storage options evaluated include geological storage, ocean storage, and mineral carbonation. The report places CO2 capture and storage in the context of other climate change mitigation options. The volume includes a Summary for Policymakers approved by governments represented in the IPCC, and a Technical Summary. It provides invaluable information for researchers in environmental science, geology, engineering and the oil and gas sector, policy-makers in governments and environmental organizations, and scientists and engineers in industry.

Solubility in Supercritical Carbon Dioxide

Solubility in Supercritical Carbon Dioxide
by Ram B. Gupta (Author), Jae-Jin Shim (Author)


Supercritical fluid extraction is an environmentally safe and cost-effective alternative to traditional organic solvents. Carbon dioxide is widely used as the solvent of choice for applications such as caffeine and nicotine extraction due to its mild critical temperature, nontoxicity, nonflammability, and low cost. Introducing the most complete collection of supercritical CO2 solubility data currently available, Solubility in Supercritical Carbon Dioxide features experimental data on more than 780 solutes in consistent units and an easily accessible format. This book reflects the authors’ painstaking efforts to compile solubility data for an extensive variety of compounds including liquids, solids, polymers, foods, drugs, nutraceuticals, pesticides, dyes, and metal complexes. Each of...

Green Carbon Dioxide: Advances in CO2 Utilization

Green Carbon Dioxide: Advances in CO2 Utilization
by Gabriele Centi (Editor), Siglinda Perathoner (Editor)


PROMISING NEW APPROACHES TO RECYCLE CARBON DIOXIDE AND REDUCE EMISSIONS With this book as their guide, readers will learn a variety of new approaches and methods to recycle and reuse carbon dioxide (CO2) in order to produce green fuels and chemicals and, at the same time, minimize CO2 emissions. The authors demonstrate how to convert CO2 into a broad range of essential products by using alternative green energy sources, such as solar, wind, and hydro-power as well as sustainable energy sources. Readers will discover that CO2 can be a driving force for the sustainable future of both the chemical industry and the energy and fuels industry. Green Carbon Dioxide features a team of expert authors, offering perspectives on the latest breakthroughs in CO2 recycling from Asia, Europe, and North...

© 2017 BrightSurf.com