Science Current Events | Science News | Brightsurf.com
 

A Protein's Role in Helping Cells Repair DNA Damage

November 02, 2012

BUFFALO, N.Y. -- In a new study, University at Buffalo scientists describe the role that a protein called TFIIB plays in helping cells repair DNA damage, a critical function for preventing the growth of tumors.

The research appeared online on Oct. 30 in the Proceedings of the National Academy of Sciences (PNAS) Early Edition.

TFIIB, short for "transcription factor II B," is a protein that binds to DNA in cells to initiate the process of transcription, which is critical for building new proteins.

When DNA damage occurs, TFIIB is altered in a way that halts general transcription, enabling a cell to give priority to repair, the researchers found. With the shut-down in effect, cells are able to prioritize the important functions carried out by a tumor-suppressing protein called p53, said lead author Jayasha Shandilya, a postdoctoral researcher in UB's Department of Biological Sciences.

"P53 is a very important protein in humans and other multicellular organisms," Shandilya said. "It is called the 'guardian of the genome' because it helps maintain the stability of the genome."

About half of cancer cases involve a mutation or deletion of the p53 gene. When DNA is damaged, it activates p53, which not only stimulates the DNA repair pathway, but also triggers the synthesis of proteins that stop cells from dividing before problems are fixed, she said. In cases where the damage is irreparable, p53 initiates apoptosis, a process of programmed cell death.

In PNAS, Shandilya and colleagues report that for normal transcription to occur, TFIIB must undergo a process called phosphorylation, in which a phosphate group is attached to the protein.

But when the scientists studied cells treated with DNA damaging agents, they found that TFIIB was dephosphorylated, preventing general transcription and enabling the cells to focus resources on helping p53 carry out its tumor suppressing functions. In essence, p53 can bypass the need for TFIIB phosphorylation to activate transcription of its target genes, which are vital for DNA damage response.

Shandilya's colleagues on the PNAS paper are Yuming Wang, currently working at Cancer Research UK, and Stefan Roberts, assistant professor of biological sciences. Roberts oversaw the study, with funding from the National Institute of General Medical Sciences, one of the National Institutes of Health.

The University at Buffalo


Related DNA Damage Current Events and DNA Damage News Articles


Blocking apoptotic response could preserve fertility in women receiving cancer treatments
Female cancer patients of reproductive age could preserve their fertility during radiation and chemotherapy through treatments that target the DNA damage response in oocytes (the cells that develop into eggs), an approach that works in animal models.

Cisplatin may cause more permanent hearing loss in people with Cockayne syndrome
The chemotherapy drug cisplatin can kill cancer, but it can also cause permanent hearing loss.

Two known chemotherapy agents effectively target breast cancer stem cells
Two existing chemotherapy drugs appear to be a powerful pair in targeting errant stem cells that are making breast cancer and enabling its spread and recurrence, scientists report.

A long-noncoding RNA regulates repair of DNA breaks in triple-negative breast cancer cells
The discovery of long non-coding RNA (lncRNA) has dramatically changed the understanding of the biology of diseases such as cancer.

Technique could help identify patients who would suffer chemo-induced heart damage
Cancer patients who receive a particular type of chemotherapy called doxorubicin run a risk of sustaining severe, lasting heart damage. But it is not possible to predict who is likely to experience this serious side effect. It is also unknown exactly how the drug damages heart muscle.

Tandem duplicate phenotype detected in triple-negative breast, other cancers
A research team led by Jackson Laboratory (JAX) President and CEO Edison Liu, M.D., have found a molecular fingerprint of some of the most deadly cancers of women: a genomic configuration described as a tandem duplicator phenotype (TDP) that is significantly enriched in triple-negative breast cancer, serous ovarian cancer and endometrial carcinomas, and that responds to a specific chemotherapy.

Genetic cause found for loss of beta cells during diabetes development
New research by Dr. Sylvie Lesage, scientist at Maisonneuve-Rosemont Hospital (CIUSSS- East Montreal) and associate research Professor at University of Montreal, just published in the prestigious international scientific journal Nature Genetics, has discovered that a common genetic defect in beta cells may underlie both known forms of diabetes.

Cells in stiffer tissues are squeezed into mutating more often
When it comes to cancerous mutations, cells in soft tissues like bone marrow and the brain tend to exhibit fewer irregularities than their stiffer somatic brethren in the lungs or bone.

Mitochondrial troublemakers unmasked in lupus
New findings expose how mitochondria might instigate lupus-like inflammation.

Brothers-in-arms: How P53 and telomeres work together to stave off cancer
When it comes to genes associated with cancer, none have been studied more extensively than p53, a tumor suppressor gene that serves as the guardian of our genetic information.
More DNA Damage Current Events and DNA Damage News Articles

DNA Repair, Mutagenesis, and Other Responses to DNA Damage (Cold Spring Harbor Perspectives in Biology)

DNA Repair, Mutagenesis, and Other Responses to DNA Damage (Cold Spring Harbor Perspectives in Biology)
by Errol C. Friedberg (Editor), Stephen J. Elledge (Editor), Alan R. Lehmann (Editor), Tomas Lindahl (Editor), Marco Muzi-Falconi (Editor)


Cellular DNA is constantly bombarded with environmental and chemical assaults that damage its molecular structure. In addition, the normal process of DNA replication is prone to error and may introduce mutations that can be passed to daughter cells. If left unrepaired, these DNA lesions can have serious consequences, such as cancer.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology reviews the mechanisms that cells use to recognize and repair various types of DNA damage. Contributors discuss base excision repair, nucleotide excision repair, mismatch repair, homologous recombination, nonhomologous end joining, the SOS response, and other pathways in prokaryotes and eukaryotes, and describe how these processes are linked to...

The Emperor of All Maladies: A Biography of Cancer

The Emperor of All Maladies: A Biography of Cancer
by Siddhartha Mukherjee (Author)


Winner of the Pulitzer Prize, and now a documentary from Ken Burns on PBS, The Emperor of All Maladies is a magnificent, profoundly humane “biography” of cancer—from its first documented appearances thousands of years ago through the epic battles in the twentieth century to cure, control, and conquer it to a radical new understanding of its essence.

Physician, researcher, and award-winning science writer, Siddhartha Mukherjee examines cancer with a cellular biologist’s precision, a historian’s perspective, and a biographer’s passion. The result is an astonishingly lucid and eloquent chronicle of a disease humans have lived with—and perished from—for more than five thousand years.

The story of cancer is a story of human ingenuity, resilience, and perseverance,...

TOX-SICK: From Toxic to Not Sick

TOX-SICK: From Toxic to Not Sick
by Suzanne Somers (Author)


“It’s as if we are all on a big, chemical drunk, and the hangover is a killer.”
—Suzanne Somers, in TOX-SICK

Pioneering health and wellness advocate, Suzanne Somers, delivers a powerful answer in this expose on the immediate and long-term dangers of living in a world that has become increasingly toxic to our health.  The build-up of toxins in our bodies can lead to myriad health concerns — including weight gain, food allergies, brain disorders, cancer, among many others. Moved to investigate by her own family’s plight, Suzanne sits down with environmental doctors and specialists who share eye-opening information and practical advice for how to survive, thrive, and stay healthy today. In Tox-Sick you’ll learn how to effectively detox all your body’s systems and...

How Not to Die: Discover the Foods Scientifically Proven to Prevent and Reverse Disease

How Not to Die: Discover the Foods Scientifically Proven to Prevent and Reverse Disease
by Michael Greger (Author), Gene Stone (Author)


From the physician behind the wildly popular website NutritionFacts.org, How Not to Die reveals the groundbreaking scientific evidence behind the only diet that can prevent and reverse many of the causes of disease-related death.The vast majority of premature deaths can be prevented through simple changes in diet and lifestyle. In How Not to Die, Dr. Michael Greger, the internationally-renowned nutrition expert, physician, and founder of NutritionFacts.org, examines the fifteen top causes of premature death in America-heart disease, various cancers, diabetes, Parkinson's, high blood pressure, and more-and explains how nutritional and lifestyle interventions can sometimes trump prescription pills and other pharmaceutical and surgical approaches, freeing us to live healthier lives.The...

What If?: Serious Scientific Answers to Absurd Hypothetical Questions

What If?: Serious Scientific Answers to Absurd Hypothetical Questions
by Randall Munroe (Author)


From the creator of the wildly popular webcomic xkcd, hilarious and informative answers to important questions you probably never thought to ask. Millions of people visit xkcd.com each week to read Randall Munroe’s iconic webcomic. His stick-figure drawings about science, technology, language, and love have a large and passionate following. Fans of xkcd ask Munroe a lot of strange questions. What if you tried to hit a baseball pitched at 90 percent the speed of light? How fast can you hit a speed bump while driving and live? If there was a robot apocalypse, how long would humanity last? In pursuit of answers, Munroe runs computer simulations, pores over stacks of declassified military research memos, solves differential equations, and consults with nuclear reactor operators. His...

The Longevity Book: The Science of Aging, the Biology of Strength, and the Privilege of Time

The Longevity Book: The Science of Aging, the Biology of Strength, and the Privilege of Time
by Cameron Diaz (Author), Sandra Bark (Author)


New York Times bestsellerCameron Diaz follows up her #1 New York Times bestseller, The Body Book, with a personal, practical, and authoritative guide that examines the art and science of growing older and offers concrete steps women can take to create abundant health and resilience as they age.Cameron Diaz wrote The Body Book to help educate young women about how their bodies function, empowering them to make better-informed choices about their health and encouraging them to look beyond the latest health trends to understand their bodies at the cellular level. She interviewed doctors, scientists, nutritionists, and a host of other experts, and shared what she’d learned—and what she wished she’d known twenty years earlier.Now Cameron continues the journey she began, opening a...

DNA Damage Recognition

DNA Damage Recognition
by Wolfram Siede (Editor), Paul W. Doetsch (Editor)


Stands as the most comprehensive guide to the subject—covering every essential topic related to DNA damage identification and repair. Covering a wide array of topics from bacteria to human cells, this book summarizes recent developments in DNA damage repair and recognition while providing timely reviews on the molecular mechanisms employed by cells to distinguish between damaged and undamaged sites and stimulate the appropriate repair pathways. about the editors... WOLFRAM SIEDE is Associate Professor, Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth.  He received the Ph.D. degree (1986) from Johann Wolfgang Goethe University, Frankfurt Germany. YOKE WAH KOW is Professor, Department of Radiation Oncology, Emory University...

DNA Damage Detection In Situ, Ex Vivo, and In Vivo: Methods and Protocols (Methods in Molecular Biology)

DNA Damage Detection In Situ, Ex Vivo, and In Vivo: Methods and Protocols (Methods in Molecular Biology)
by Vladimir V. Didenko (Editor)


Recent advances in organic chemistry, fluorescent microscopy, and materials science have created an entirely new range of techniques and probes for imaging DNA damage in molecular and cellular biology. In DNA Damage Detection In Situ, Ex Vivo, and In Vivo: Methods and Protocols, expert researchers explore the latest advances in the area, covering both recent and established techniques to detect and quantify DNA damage at scales ranging from subcellular to the level of a whole live organism. Chapters present all major assays used in molecular and cellular biology for the labeling of DNA damage in situ, ex vivo, and in vivo. Composed in the highly successful Methods in Molecular Biology™ series format, each chapter contains a brief introduction, step-by-step methods, a list of necessary...

First Aid for the Usmle Step 1, 2016

First Aid for the Usmle Step 1, 2016
by Tao Le (Author), Vikas Bhushan (Author)


THE “BIBLE” FOR USMLE STEP 1 PREP―AND THE ULTIMATE TOOL FOR ORGANIZING YOUR STUDY!This annually updated review delivers a comprehensive collection of high-yield facts and mnemonics that pinpoint exactly what students need to know to pass the exam. Co-authored by medical students who recently took the boards, it provides a complete framework to help students prepare for the most stressful exam of their careers.1,250+ must-know topics provide a complete framework for your Step 1 preparationTest-taking advice with focus on high-efficiency studyingUpdated in all subject areas based on feedback from thousands of studentsExtensive faculty review process with nationally known USMLE instructors1,000+ color photos and diagrams help you visualize high-yield conceptsExpanded guide to top-rated...

Eat to Live: The Amazing Nutrient-Rich Program for Fast and Sustained Weight Loss, Revised Edition

Eat to Live: The Amazing Nutrient-Rich Program for Fast and Sustained Weight Loss, Revised Edition
by Joel Fuhrman (Author)


The Eat To Live 2011 revised edition includes updated scientific research supporting Dr. Fuhrman's revolutionary six-week plan and a brand new chapter highlighting Dr. Fuhrman's discovery of toxic hunger and the role of food addiction in weight issues.  This new chapter provides novel and important insights into weight gain. It explains how and why eating the wrong foods causes toxic hunger and the desire to over consume calories; whereas a diet of high micronutrient quality causes true hunger which decreases the sensations leading to food cravings and overeating behaviors.  It instructs readers on how to leave behind the discomfort of toxic hunger, cravings, and addictions to unhealthy foods.

New recipes and menus are included as well as new and updated Frequently...

© 2016 BrightSurf.com