Science Current Events | Science News | Brightsurf.com
 

A Protein's Role in Helping Cells Repair DNA Damage

November 02, 2012
BUFFALO, N.Y. -- In a new study, University at Buffalo scientists describe the role that a protein called TFIIB plays in helping cells repair DNA damage, a critical function for preventing the growth of tumors.

The research appeared online on Oct. 30 in the Proceedings of the National Academy of Sciences (PNAS) Early Edition.

TFIIB, short for "transcription factor II B," is a protein that binds to DNA in cells to initiate the process of transcription, which is critical for building new proteins.

When DNA damage occurs, TFIIB is altered in a way that halts general transcription, enabling a cell to give priority to repair, the researchers found. With the shut-down in effect, cells are able to prioritize the important functions carried out by a tumor-suppressing protein called p53, said lead author Jayasha Shandilya, a postdoctoral researcher in UB's Department of Biological Sciences.

"P53 is a very important protein in humans and other multicellular organisms," Shandilya said. "It is called the 'guardian of the genome' because it helps maintain the stability of the genome."

About half of cancer cases involve a mutation or deletion of the p53 gene. When DNA is damaged, it activates p53, which not only stimulates the DNA repair pathway, but also triggers the synthesis of proteins that stop cells from dividing before problems are fixed, she said. In cases where the damage is irreparable, p53 initiates apoptosis, a process of programmed cell death.

In PNAS, Shandilya and colleagues report that for normal transcription to occur, TFIIB must undergo a process called phosphorylation, in which a phosphate group is attached to the protein.

But when the scientists studied cells treated with DNA damaging agents, they found that TFIIB was dephosphorylated, preventing general transcription and enabling the cells to focus resources on helping p53 carry out its tumor suppressing functions. In essence, p53 can bypass the need for TFIIB phosphorylation to activate transcription of its target genes, which are vital for DNA damage response.

Shandilya's colleagues on the PNAS paper are Yuming Wang, currently working at Cancer Research UK, and Stefan Roberts, assistant professor of biological sciences. Roberts oversaw the study, with funding from the National Institute of General Medical Sciences, one of the National Institutes of Health.

The University at Buffalo


Related DNA Damage Current Events and DNA Damage News Articles


New knowledge of genes driving bladder cancer points to targeted treatments
The story of cancer care seems so simple: find the mutated gene that causes cancer and turn it off or fix it.

Less effective DNA repair process takes over as mice age
As we and other vertebrates age, our DNA accumulates mutations and becomes rearranged, which may result in a variety of age-related illnesses, including cancers.

Sabotage as therapy: aiming lupus antibodies at vulnerable cancer cells
Yale Cancer Center researchers may have discovered a new way of harnessing lupus antibodies to sabotage cancer cells made vulnerable by deficient DNA repair.

Scientists make major breakthrough in understanding leukemia
Scientists from Queen Mary University of London (QMUL) have discovered mutations in genes that lead to childhood leukaemia of the acute lymphoblastic type - the most common childhood cancer in the world.

NTU gene research promises better treatment procedures for children with leukaemia
A research team led by Nanyang Technological University (NTU) scientists have made a key finding which is expected to open up improved treatment possibilities for children suffering from leukaemia.

Analysis of African plant reveals possible treatment for aging brain
For hundreds of years, healers in São Tomé e Príncipe-an island off the western coast of Africa-have prescribed cata-manginga leaves and bark to their patients. These pickings from the Voacanga africana tree are said to decrease inflammation and ease the symptoms of mental disorders.

Tumor suppressor mutations alone don't explain deadly cancer
Although mutations in a gene dubbed "the guardian of the genome" are widely recognized as being associated with more aggressive forms of cancer, researchers at the University of California, San Diego School of Medicine have found evidence suggesting that the deleterious health effects of the mutated gene may in large part be due to other genetic abnormalities, at least in squamous cell head and neck cancers.

Protein ZEB1 promotes breast tumor resistance to radiation therapy
Twist, Snail, Slug. They may sound like words in a children's nursery rhyme, but they are actually the exotic names given to proteins that can generate cells with stem cell-like properties that have the ability to form diverse types of tissue.

New paper describes how DNA avoids damage from UV light
In the same week that the U.S. surgeon general issued a 101-page report about the dangers of skin cancer, researchers at Montana State University published a paper breaking new ground on how DNA - the genetic code in every cell - responds when exposed to ultraviolet (UV) light.

Key to aging immune system is discovered
There's a good reason people over 60 are not donor candidates for bone marrow transplantation. The immune system ages and weakens with time, making the elderly prone to life-threatening infection and other maladies, and a UC San Francisco research team now has discovered a reason why.
More DNA Damage Current Events and DNA Damage News Articles

DNA Repair, Mutagenesis, and Other Responses to DNA Damage (Cold Spring Harbor Perspectives in Biology)

DNA Repair, Mutagenesis, and Other Responses to DNA Damage (Cold Spring Harbor Perspectives in Biology)
by Errol C. Friedberg (Editor), Stephen J. Elledge (Editor), Alan R. Lehmann (Editor), Tomas Lindahl (Editor), Marco Muzi-Falconi (Editor)


Cellular DNA is constantly bombarded with environmental and chemical assaults that damage its molecular structure. In addition, the normal process of DNA replication is prone to error and may introduce mutations that can be passed to daughter cells. If left unrepaired, these DNA lesions can have serious consequences, such as cancer.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology reviews the mechanisms that cells use to recognize and repair various types of DNA damage. Contributors discuss base excision repair, nucleotide excision repair, mismatch repair, homologous recombination, nonhomologous end joining, the SOS response, and other pathways in prokaryotes and eukaryotes, and describe how these processes are linked to...

DNA Damage Detection In Situ, Ex Vivo, and In Vivo: Methods and Protocols (Methods in Molecular Biology)

DNA Damage Detection In Situ, Ex Vivo, and In Vivo: Methods and Protocols (Methods in Molecular Biology)
by Vladimir V. Didenko (Editor)


Recent advances in organic chemistry, fluorescent microscopy, and materials science have created an entirely new range of techniques and probes for imaging DNA damage in molecular and cellular biology. In DNA Damage Detection In Situ, Ex Vivo, and In Vivo: Methods and Protocols, expert researchers explore the latest advances in the area, covering both recent and established techniques to detect and quantify DNA damage at scales ranging from subcellular to the level of a whole live organism. Chapters present all major assays used in molecular and cellular biology for the labeling of DNA damage in situ, ex vivo, and in vivo. Composed in the highly successful Methods in Molecular Biology™ series format, each chapter contains a brief introduction, step-by-step methods, a list of necessary...

DNA Damage and Repair: Volume I: DNA Repair in Prokaryotes and Lower Eukaryotes (Contemporary Cancer Research)

DNA Damage and Repair: Volume I: DNA Repair in Prokaryotes and Lower Eukaryotes (Contemporary Cancer Research)
by Jac Nickoloff (Editor), Merl F. Hoekstra (Editor)


Award-winning researchers review of key aspects of DNA repair in a wide variety of organisms, including all-important model systems. The book focuses on DNA damage and repair in prokaryotic and model eukaryotic systems, emphasizing the significant progress that has been made in the past five years. Each chapter has undergone a rigorous peer-review cycle to ensure definitive and comprehensive treatment. Major topics include UV and X-Ray repair, repair of chemical damage, recombinational repair, mismatch repair, transcription-repair coupling, and the role of DNA repair in cell cycle regulation.

DNA Chemistry, DNA Damage and Repair, Aid to Human Health

DNA Chemistry, DNA Damage and Repair, Aid to Human Health
by Dr. Jon Schiller PhD (Author)


Your author decided to write this book about DNA Chemistry after being invited to a Caltech Associates dinner to hear a speech by Professor Jacqueline Barton, a leader in the study of chemistry of DNA by the Chemistry and Chemical Engineering Department at Caltech where she is Chair of that department. I have included in this book research I discovered taking place after investigating the Internet. As Professor Barton stated in her Associates lecture, DNA can be damaged in the double helical DNA. She and her Caltech research associates are using a base of sensors they design to find where the DNA is damaged and is in need of repair to avoid cancerous mutations. The purpose of this book is to use the Internet to explore what is happening in DNA Chemistry Research. I find much research...

  Radiation Damage in DNA: Structure/Function Relationships at Early Times
by Alfred F. Fuciarelli (Editor), John D. Zimbrick (Editor)


Book by

DNA Damage Recognition

DNA Damage Recognition
by Wolfram Siede (Editor), Paul W. Doetsch (Editor)


Stands as the most comprehensive guide to the subject—covering every essential topic related to DNA damage identification and repair. Covering a wide array of topics from bacteria to human cells, this book summarizes recent developments in DNA damage repair and recognition while providing timely reviews on the molecular mechanisms employed by cells to distinguish between damaged and undamaged sites and stimulate the appropriate repair pathways. about the editors... WOLFRAM SIEDE is Associate Professor, Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth.  He received the Ph.D. degree (1986) from Johann Wolfgang Goethe University, Frankfurt Germany. YOKE WAH KOW is Professor, Department of Radiation Oncology, Emory University...

DNA Repair and Cancer: From Bench to Clinic

DNA Repair and Cancer: From Bench to Clinic
by Srinivasan Madhusudan (Editor), David M. Wilson III (Editor)


DNA repair is a rapidly advancing field in biology and these systems represent a major defense mechanism against environmental and intracellular damaging agents such as sunlight, ionizing radiation, and reactive oxygen species. With contributions from eminent researchers, this book explores the basics and current trends in this critical field. Topics include carcinogenesis as a predictive and/or prognostic biomarker for cancer therapy, nucleotide excision repair, and tumor genetics and personalized medicine. The contributions provide essential information to scientists, pharmaceutical investigators, and clinicians interested in cancer therapy.

DNA Damage and Repair: Volume 2: DNA Repair in Higher Eukaryotes (Contemporary Cancer Research)

DNA Damage and Repair: Volume 2: DNA Repair in Higher Eukaryotes (Contemporary Cancer Research)
by Jac Nickoloff (Editor), Merl F. Hoekstra (Editor)


Cutting edge reviews by leading researchers illuminate key aspects of DNA repair in mammalian systems and its relationship to human genetic disease and cancer. Major topics include UV and X-Ray repair, repair of chemical damage, recombinational repair, mismatch repair, transcription-repair coupling, and the role of DNA repair in disease prevention. Extensive up-to-date references and rigorous peer-review of each chapter make this volume definitive and bring it to the active frontiers of research.

DNA Damage Repair: Repair Mechanisms and Aging (DNA: Properties and Modifications, Functions and Interactions, Recombination and Applications)

DNA Damage Repair: Repair Mechanisms and Aging (DNA: Properties and Modifications, Functions and Interactions, Recombination and Applications)
by Allison E. Thomas (Author), Allison E. Thomas (Editor)




The DNA Damage Response: Implications on Cancer Formation and Treatment

The DNA Damage Response: Implications on Cancer Formation and Treatment
by Kum Kum Khanna (Editor), Yosef Shiloh (Editor)


The ?eld of cellular responses to DNA damage has attained widespread recognition and interest in recent years commensurate with its fundamental role in the ma- tenance of genomic stability. These responses, which are essential to preventing cellular death or malignant transformation, are organized into a sophisticated s- tem designated the “DNA damage response”. This system operates in all living organisms to maintain genomic stability in the face of constant attacks on the DNA from a variety of endogenous by-products of normal metabolism, as well as exogenous agents such as radiation and toxic chemicals in the environment. The response repairs DNA damage via an intricate cellular signal transduction network that coordinates with various processes such as regulation of DNA...

© 2014 BrightSurf.com