Science Current Events | Science News |

A Protein's Role in Helping Cells Repair DNA Damage

November 02, 2012
BUFFALO, N.Y. -- In a new study, University at Buffalo scientists describe the role that a protein called TFIIB plays in helping cells repair DNA damage, a critical function for preventing the growth of tumors.

The research appeared online on Oct. 30 in the Proceedings of the National Academy of Sciences (PNAS) Early Edition.

TFIIB, short for "transcription factor II B," is a protein that binds to DNA in cells to initiate the process of transcription, which is critical for building new proteins.

When DNA damage occurs, TFIIB is altered in a way that halts general transcription, enabling a cell to give priority to repair, the researchers found. With the shut-down in effect, cells are able to prioritize the important functions carried out by a tumor-suppressing protein called p53, said lead author Jayasha Shandilya, a postdoctoral researcher in UB's Department of Biological Sciences.

"P53 is a very important protein in humans and other multicellular organisms," Shandilya said. "It is called the 'guardian of the genome' because it helps maintain the stability of the genome."

About half of cancer cases involve a mutation or deletion of the p53 gene. When DNA is damaged, it activates p53, which not only stimulates the DNA repair pathway, but also triggers the synthesis of proteins that stop cells from dividing before problems are fixed, she said. In cases where the damage is irreparable, p53 initiates apoptosis, a process of programmed cell death.

In PNAS, Shandilya and colleagues report that for normal transcription to occur, TFIIB must undergo a process called phosphorylation, in which a phosphate group is attached to the protein.

But when the scientists studied cells treated with DNA damaging agents, they found that TFIIB was dephosphorylated, preventing general transcription and enabling the cells to focus resources on helping p53 carry out its tumor suppressing functions. In essence, p53 can bypass the need for TFIIB phosphorylation to activate transcription of its target genes, which are vital for DNA damage response.

Shandilya's colleagues on the PNAS paper are Yuming Wang, currently working at Cancer Research UK, and Stefan Roberts, assistant professor of biological sciences. Roberts oversaw the study, with funding from the National Institute of General Medical Sciences, one of the National Institutes of Health.

The University at Buffalo

Related DNA Damage Current Events and DNA Damage News Articles

The DNA damage response goes viral: A way in for new cancer treatments
Every organism--from a seedling to a president--must protect its DNA at all costs, but precisely how a cell distinguishes between damage to its own DNA and the foreign DNA of an invading virus has remained a mystery.

Reducing resistance to chemotherapy in colorectal cancer by inhibition of PHD1
Scientists at VIB and KU Leuven have shown that blocking the PHD1 oxygen sensor hinders the activation of p53, a transcription factor that aids colorectal cancer (CRC) cells in repairing themselves and thus resisting chemotherapy.

How the malaria parasite increases the risk of blood cancer
A link between malaria and Burkitt's lymphoma was first described more than 50 years ago, but how a parasitic infection could turn immune cells cancerous has remained a mystery.

Stress responder is a first responder in helping repair DNA damage and avoiding cancer
DNA damage increases the risk of cancer, and researchers have found that a protein, known to rally when cells get stressed, plays a critical, early step in its repair.

RNA-binding protein influences key mediator of cellular inflammation and stress responses
Messenger (mRNA) molecules are a key component of protein biosynthesis. They are first transcribed as a "working copy" of the DNA and then translated into protein molecules.

Combination therapy may be more effective against the most common ovarian cancer
High-grade serous ovarian cancer often responds well to the chemotherapy drug carboplatin, but why it so frequently comes back after treatment has been a medical mystery.

Scientists identify gene vital for rebuilding intestine after cancer treatment
The stem cells in our gut divide so fast that they create a completely new population of epithelial cells every week.

Pitt study: Ancient proteins involved in DNA repair could shed light on tumor development
By studying the yeast used in beer- and bread-making, researchers at the University of Pittsburgh School of Medicine have uncovered the mechanism by which ancient proteins repair DNA damage and how their dysfunction could lead to the development of tumors.

Action spectrum of sun skin damage documented
Scientists at Newcastle University have documented for the first time the DNA damage which can occur to skin across the full range of ultraviolet radiation from the sun providing an invaluable tool for sun-protection and the manufacturers of sunscreen.

Targeting telomeres, the timekeepers of cells, could improve chemotherapy
Telomeres, specialized ends of our chromosomes that dictate how long cells can continue to duplicate themselves, have long been studied for their links to the aging process and cancer.
More DNA Damage Current Events and DNA Damage News Articles

DNA Repair, Mutagenesis, and Other Responses to DNA Damage (Cold Spring Harbor Perspectives in Biology)

DNA Repair, Mutagenesis, and Other Responses to DNA Damage (Cold Spring Harbor Perspectives in Biology)
by Errol C. Friedberg (Editor), Stephen J. Elledge (Editor), Alan R. Lehmann (Editor), Tomas Lindahl (Editor), Marco Muzi-Falconi (Editor)

Cellular DNA is constantly bombarded with environmental and chemical assaults that damage its molecular structure. In addition, the normal process of DNA replication is prone to error and may introduce mutations that can be passed to daughter cells. If left unrepaired, these DNA lesions can have serious consequences, such as cancer.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology reviews the mechanisms that cells use to recognize and repair various types of DNA damage. Contributors discuss base excision repair, nucleotide excision repair, mismatch repair, homologous recombination, nonhomologous end joining, the SOS response, and other pathways in prokaryotes and eukaryotes, and describe how these processes are linked to...

DNA Replication - Damage from Environmental Carcinogens (SpringerBriefs in Biochemistry and Molecular Biology)

DNA Replication - Damage from Environmental Carcinogens (SpringerBriefs in Biochemistry and Molecular Biology)
by Huidong Zhang (Author)

This book reviews the main concepts concerning DNA damage due to environmental carcinogens, the effects of DNA damage on DNA replication using a single DNA polymerase or DNA replisome, and the effects of carcinogens on various cell activities. It also introduces the detailed protocols for bypassing DNA damage. As we know, various environmental carcinogens are produced as a result of industry, agriculture, chemical engineering and vehicle exhaust in our daily life. It has been reported that the environmental carcinogens can be connected to tumors and cancer, directly threatening human health. In this regard, DNA replication is highly susceptible to damage. This book provides graduate students and researchers with an overview of the effects of environmental carcinogens on DNA replication...

DNA Damage and Repair: Advances from Phage to Humans (Contemporary Cancer Research)

DNA Damage and Repair: Advances from Phage to Humans (Contemporary Cancer Research)
by Jac A. Nickoloff (Editor), Merl F. Hoekstra (Editor)

Jac A. Nickoloff and Merl F. Hoekstra update and expand their two earlier acclaimed volumes (Vol. I: DNA Repair in Prokaryotes and Lower Eukaryotes and Vol. II: DNA Repair in Higher Eurkaryotes) with cutting-edge reviews by leading authorities of primary experimental findings about DNA repair processes in cancer biology. The reviews cover a wide range of topics from viruses and prokaryotes to higher eukaryotes, and include several new topics, among them the role of recombination in replication of damaged DNA, X-ray crystallographic analysis of DNA repair protein structures, DNA repair proteins and teleomere function, and the roles of BRCA1 and BRCA2 in DNA repair. Authoritative and up-to-date, DNA Damage and Repair, Vol. III: Advances from Phage to Humans surveys the rapidly moving...

DNA Damage Recognition

DNA Damage Recognition
by Wolfram Siede (Editor), Paul W. Doetsch (Editor)

Stands as the most comprehensive guide to the subject—covering every essential topic related to DNA damage identification and repair. Covering a wide array of topics from bacteria to human cells, this book summarizes recent developments in DNA damage repair and recognition while providing timely reviews on the molecular mechanisms employed by cells to distinguish between damaged and undamaged sites and stimulate the appropriate repair pathways. about the editors... WOLFRAM SIEDE is Associate Professor, Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth.  He received the Ph.D. degree (1986) from Johann Wolfgang Goethe University, Frankfurt Germany. YOKE WAH KOW is Professor, Department of Radiation Oncology, Emory University...

DNA Damage Detection In Situ, Ex Vivo, and In Vivo: Methods and Protocols (Methods in Molecular Biology)

DNA Damage Detection In Situ, Ex Vivo, and In Vivo: Methods and Protocols (Methods in Molecular Biology)
by Vladimir V. Didenko (Editor)

Recent advances in organic chemistry, fluorescent microscopy, and materials science have created an entirely new range of techniques and probes for imaging DNA damage in molecular and cellular biology. In DNA Damage Detection In Situ, Ex Vivo, and In Vivo: Methods and Protocols, expert researchers explore the latest advances in the area, covering both recent and established techniques to detect and quantify DNA damage at scales ranging from subcellular to the level of a whole live organism. Chapters present all major assays used in molecular and cellular biology for the labeling of DNA damage in situ, ex vivo, and in vivo. Composed in the highly successful Methods in Molecular Biology™ series format, each chapter contains a brief introduction, step-by-step methods, a list of necessary...

Incretin Hormones & Oxidative DNA Damage in Type 2 Diabetes Mellitus: How Incretin hormones affect oxidative DNA damage and dyslipidemia in people with type 2 diabetes mellitus

Incretin Hormones & Oxidative DNA Damage in Type 2 Diabetes Mellitus: How Incretin hormones affect oxidative DNA damage and dyslipidemia in people with type 2 diabetes mellitus
by Hayder Al-Aubaidy (Author)

Type 2 diabetes is usually caused by a combination of pancreatic β-cell failure and insulin resistance in target tissues like liver, muscle and fat. Insulin resistance is characterized by an impaired effect of insulin to reduce hepatic glucose production and to promote glucose uptake in peripheral tissues. Many new pharmacological agents have been added to our armamentarium of treatments for DM in the last decade. The goal of all treatments is the same irrespective of the cause of the DM: namely, to normalize blood glucose. Incretin hormones (Glucagon like peptide, GLP and Glucose dependent insulinotropic peptide, GIP) are peptide hormones secreted by enteroendocrine cells that line the gastrointestinal (GIT) tract mainly from K & L cells of intestine, Following glucose or fat...

DNA Chemistry, DNA Damage and Repair, Aid to Human Health

DNA Chemistry, DNA Damage and Repair, Aid to Human Health
by Dr. Jon Schiller PhD (Author)

Your author decided to write this book about DNA Chemistry after being invited to a Caltech Associates dinner to hear a speech by Professor Jacqueline Barton, a leader in the study of chemistry of DNA by the Chemistry and Chemical Engineering Department at Caltech where she is Chair of that department. I have included in this book research I discovered taking place after investigating the Internet. As Professor Barton stated in her Associates lecture, DNA can be damaged in the double helical DNA. She and her Caltech research associates are using a base of sensors they design to find where the DNA is damaged and is in need of repair to avoid cancerous mutations. The purpose of this book is to use the Internet to explore what is happening in DNA Chemistry Research. I find much research...

Chromatin structure and DNA damage repair

Chromatin structure and DNA damage repair

The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The two main features of the DNA damage response mechanisms are cell-cycle checkpoint activation and, at the heart of the response, DNA repair. For both damage signalling and repair, chromatin remodelling is most likely a prerequisite. Here, we discuss current knowledge on chromatin remodelling with respect to the cellular response to DNA damage, with emphasis on the response to lesions resolved by...

Technologies for Detection of DNA Damage and Mutations

Technologies for Detection of DNA Damage and Mutations
by G.P. Pfeifer (Editor)

Man-made carcinogens, natural genotoxic agents in the environment, as well as ionizing and ultraviolet radiation can damage DNA and are a constant threat to genome integrity. Throughout the evolution oflife, complex DNA repair systems have developed in all living organisms to cope with this damage. Unrepaired DNA lesions can promote genetic alterations (mutations) that may be linked to an altered phenotype, and, if growth-controlling genes are involved, these mutations can lead to cell transformation and the development of malignant tumors. Proto­ oncogenes and tumor suppressor genes may be critical targets for DNA damaging agents. In a number of animal model systems, correlations between exposure to a carcinogen, tumor develop­ ment, and genetic changes in tumor DNA have been...

DNA Repair and Mutagenesis

DNA Repair and Mutagenesis
by Errol C. Friedberg (Author), Graham C. Walker (Author), Wolfram Siede (Author), Richard D. Wood (Author), Roger A. Schultz (Author), Tom Ellenberger (Author)

An essential resource for all scientists researching cellular responses to DNA damage. • Introduces important new material reflective of the major changes and developments that have occurred in the field over the last decade. • Discussed the field within a strong historical framework, and all aspects of biological responses to DNA damage are detailed. • Provides information on covering sources and consequences of DNA damage; correcting altered bases in DNA: DNA repair; DNA damage tolerance and mutagenesis; regulatory responses to DNA damage in eukaryotes; and disease states associated with defective biological responses to DNA damage.

© 2015