Science Current Events | Science News | Brightsurf.com
 

New Material Promises Better Solar Cells

February 13, 2013
Researchers at the Vienna University of Technology show that a recently discovered class of materials can be used to create a new kind of solar cell.

Single atomic layers are combined to create novel materials with completely new properties. Layered oxide heterostructures are a new class of materials, which has attracted a great deal of attention among materials scientists in the last few years. A research team at the Vienna University of Technology, together with colleagues from the USA and Germany, has now shown that these heterostructures can be used to create a new kind of extremely efficient ultra-thin solar cells.

Discovering New Material Properties in Computer Simulations

"Single atomic layers of different oxides are stacked, creating a material with electronic properties which are vastly different from the properties the individual oxides have on their own", says Professor Karsten Held from the Institute for Solid State Physics, Vienna University of Technology. In order to design new materials with exactly the right physical properties, the structures were studied in large-scale computer simulations. As a result of this research, the scientists at TU Vienna discovered that the oxide heterostructures hold great potential for building solar cells.

Turning Light into Electricity

The basic idea behind solar cells is the photoelectric effect. Its simplest version was already explained by Albert Einstein in 1905: when a photon is absorbed, it can cause an electron to leave its place and electric current starts to flow. When an electron is removed, a positively charged region stays behind - a so called "hole". Both the negatively charged electrons as well as the holes contribute to the electrical current.

"If these electrons and holes in the solar cell recombine instead of being transported away, nothing happens and the energy cannot be used", says Elias Assmann, who carried out a major part of the computer simulations at TU Vienna. "The crucial advantage of the new material is that on a microscopic scale, there is an electric field inside the material, which separates electrons and holes." This increases the efficiency of the solar cell.

Two Isolators Make a Metal

The oxides used to create the material are actually isolators. However, if two appropriate types of isolators are stacked, an astonishing effect can be observed: the surfaces of the material become metallic and conduct electrical current. "For us, this is very important. This effect allows us to conveniently extract the charge carriers and create an electrical circuit", says Karsten Held. Conventional solar cells made of silicon require metal wires on their surface to collect the charge carriers - but these wires block part of the light from entering the solar cell.

Not all photons are converted into electrical current with the same efficiency. For different colors of light, different materials work best. "The oxide heterostructures can be tuned by choosing exactly the right chemical elements", says Professor Blaha (TU Vienna). In the computer simulations, oxides containing Lanthanum and Vanadium were studied, because that way the materials operate especially well with the natural light of the sun. "It is even possible to combine different kinds of materials, so that different colors of light can be absorbed in different layers of the solar cell at maximum efficiency", says Elias Assmann.

Putting Theory into Practice

The team from TU Vienna was assisted by Satoshi Okamoto (Oak Ridge National Laboratory, Tennessee, USA) and Professor Giorgio Sangiovanni, a former employee of TU Vienna, who is now working at Würzburg University, Germany. In Würzburg, the new solar cells will now be build and tested. "The production of these solar cells made of oxide layers is more complicated than making standard silicon solar cells. But wherever extremely high efficiency or minimum thickness is required, the new structures should be able to replace silicon cells", Karsten Held believes.


Vienna University of Technology


Related Solar Cells Current Events and Solar Cells News Articles


Oregon researchers glimpse pathway of sunlight to electricity
Four pulses of laser light on nanoparticle photocells in a University of Oregon spectroscopy experiment has opened a window on how captured sunlight can be converted into electricity.

ORNL microscopy pencils patterns in polymers at the nanoscale
Scientists at the Department of Energy's Oak Ridge National Laboratory have used advanced microscopy to carve out nanoscale designs on the surface of a new class of ionic polymer materials for the first time.

Spider's web weaves way to advanced networks and displays
The next generation of light-manipulating networks may take their lead from designs inspired by spiders and leaves, according to a new report from two Boston College physicists and colleagues at South China Normal University.

Stacking Two-Dimensional Materials May Lower Cost of Semiconductor Devices
A team of researchers led by North Carolina State University has found that stacking materials that are only one atom thick can create semiconductor junctions that transfer charge efficiently, regardless of whether the crystalline structure of the materials is mismatched - lowering the manufacturing cost for a wide variety of semiconductor devices such as solar cells, lasers and LEDs.

Nanoshaping method points to future manufacturing technology
A new method that creates large-area patterns of three-dimensional nanoshapes from metal sheets represents a potential manufacturing system to inexpensively mass produce innovations such as "plasmonic metamaterials" for advanced technologies.

Researchers Demonstrate New Way To Plug 'Leaky' Light Cavities
Engineers at the University of California, San Diego have demonstrated a new and more efficient way to trap light, using a phenomenon called bound states in the continuum (BIC) that was first proposed in the early days of quantum wave mechanics.

New Technique Could Harvest More of the Sun's Energy
As solar panels become less expensive and capable of generating more power, solar energy is becoming a more commercially viable alternative source of electricity. However, the photovoltaic cells now used to turn sunlight into electricity can only absorb and use a small fraction of that light, and that means a significant amount of solar energy goes untapped.

Light propagation in solar cells made visible
How can light which has been captured in a solar cell be examined in experiments? Jülich scientists have succeeded in looking directly at light propagation within a solar cell by using a trick.

New technique offers spray-on solar power
Pretty soon, powering your tablet could be as simple as wrapping it in cling wrap.

In world first -- UNSW researchers convert sunlight to electricity with over 40 percent efficiency
UNSW Australia's solar researchers have converted over 40% of the sunlight hitting a solar system into electricity, the highest efficiency ever reported.
More Solar Cells Current Events and Solar Cells News Articles

The Physics of Solar Cells (Properties of Semiconductor Materials)

The Physics of Solar Cells (Properties of Semiconductor Materials)
by Jenny Nelson (Author)


This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included. Contents: Photons In, Electrons Out: Basic Principles of PV; Electrons and Holes in Semiconductors; Generation and Recombination; Junctions; Analysis of the p n Junction; Monocrystalline Solar Cells; Thin Film...

Build Your Own Solar Panel: Generate Electricity from the Sun.

Build Your Own Solar Panel: Generate Electricity from the Sun.
by Phillip Hurley (Author)


Whether you're trying to get off the grid, or you just like to experiment, Build Your Own Solar Panel has all the information you need to build your own photovoltaic panel to generate electricity from the sun. Now available for the first time in print, this revised and expanded edition has easy-to-follow directions, and over 150 detailed photos and illustrations. Lists of materials, tools, and suppliers of PV cells are included. Every-day tools are all that you need to complete these projects.
Build Your Own Solar Panel will show you how to:
Design and build PV panels,
Customize panel output,
Make tab and bus ribbon,
Solder cell connections,
Wire a photovoltaic panel,
Purchase solar cells,
Test and rate PV cells,
Repair damaged solar cells,
Work...

Build A Solar Hydrogen Fuel Cell System

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)


Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology. Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including: ESPMs (Electrolyzer Specific Photovoltaic Modules) – 40 watt solar panels designed specifically to run electrolyzers efficiently; a 40-80 watt electrolyzer for intermittant power from renewable energy sources such as solar and wind; and, a 6-12...

Solar Cells, Second Edition: Materials, Manufacture and Operation

Solar Cells, Second Edition: Materials, Manufacture and Operation
by Augustin McEvoy (Author), L. Castaner (Author), Tom Markvart (Author)


Enormous leaps forward in the efficiency and the economy of solar cells are being made at a furious pace. New materials and manufacturing processes have opened up new realms of possibility for the application of solar cells. Crystalline silicon cells are increasingly making way for thin film cells, which are spawning experimentation with third-generation high-efficiency multijunction cells, carbon-nanotube based cells, UV light for voltage enhancement, and the use of the infrared spectrum for night-time operation, to name only a few recent advances. This thoroughly updated new edition of Markvart and Castaner's Solar Cells, extracted from their industry standard Practical Handbook of Photovoltaics, is the definitive reference covering the science and operation, materials and manufacture...

Solar Electricity Handbook - 2014 Edition: A Simple Practical Guide to Solar Energy - Designing and Installing Photovoltaic Solar Electric Systems

Solar Electricity Handbook - 2014 Edition: A Simple Practical Guide to Solar Energy - Designing and Installing Photovoltaic Solar Electric Systems
by Mr Michael Boxwell (Author)


Solar electricity is a wonderful concept. Take free power from the sun and use it to power electrical equipment. No ongoing electricity bills, no reliance on an electricity socket. 'Free' electricity that does not harm the planet. Of course, it is not as simple as that. Yet generating electricity from sunlight alone is a powerful resource with applications and benefits throughout the world. But how does it work? What is it suitable for? How much does it cost? How do I install it? This best selling internet-linked book answers all these questions and shows you how to use the power of the sun to generate electricity yourself. This sixth edition includes more information, with new and improved chapters for grid-tie systems and brings the book right up to date with the latest technology...

Practical Photovoltaics: Electricity from Solar Cells, 3rd Edition

Practical Photovoltaics: Electricity from Solar Cells, 3rd Edition
by Richard J. Komp (Author), John Perlin (Foreword)


Practical Photovoltaics, the now-classic reference on solar electricity, offers a unique combination of technical discussion and practical advice. Physicist, lecturer, and solar-home dweller Richard Komp explains the "how" and the "how-to" of PV, while providing valuable information on the industry, new developments, and the future. The book is a comprehensive guide to the theory and reality of solar electricity, as well as a detailed installation and maintenance manual. A well-illustrated appendix offers step-by-step instructions for constructing your own solar module, a creative approach to demystifying the technology. Presented in a clear, concise, and understandable style, Dr. Komp's contribution to PV literature has been called the "best single reference available," "the easiest and...

Solar II: How to Design, Build and Set Up Photovoltaic Components and Solar Electric Systems

Solar II: How to Design, Build and Set Up Photovoltaic Components and Solar Electric Systems
by Phillip Hurley (Author)


Now that you've built your solar panels, how do you set up a photovoltaic system and plug in? In Solar II, Phillip Hurley, author of Build Your Own Solar Panel, will show you how to:
Calculate daily electrical usage and needs
Plan and size your solar electric system
Build racks and charge controllers
Mount and orient PV panels
Wire solar panel arrays
Make a ventilated battery box
Wire battery arrays for solar panels
Install an inverter
Maintain solar batteries for optimum life and performance
Make your own combiner box, bus bars, and DC and AC service boxes
Solar II includes easy-to-follow directions with over 150 black & white photos, illustrations and schematics.

Physics of Solar Cells: From Basic Principles to Advanced Concepts

Physics of Solar Cells: From Basic Principles to Advanced Concepts
by Peter Würfel (Author)


Based on the highly regarded and extremely successful first edition, this thoroughly revised, updated and expanded edition contains the latest knowledge on the mechanisms of solar energy conversion.
The textbook describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency.
Requiring no more than standard physics knowledge, the book enables both students and researchers to understand the factors driving conversion efficiency and to apply this knowledge to their own solar cell development.
New exercises after each chapter help students to consolidate their freshly acquired knowledge, while the book also serves as a reference for researchers already working in...

Solar Electricity Handbook - 2013 Edition: A Simple Practical Guide to Solar Energy - Designing and Installing Photovoltaic Solar Electric Systems

Solar Electricity Handbook - 2013 Edition: A Simple Practical Guide to Solar Energy - Designing and Installing Photovoltaic Solar Electric Systems
by Mr Michael Boxwell (Author)


The 2013 edition of the Solar Electricity Handbook is a practical and straightforward guide to using photovoltaic solar panels to generate electricity. It is the seventh edition of the book, which has been updated yearly since 2009.

Assuming no previous knowledge of solar panels, the book explains how solar panels work, how they can be used and explains the steps you need to take to successfully design and install a solar electric system from scratch using photovoltaic solar panels.Accompanying this book is a solar resource website containing lots of useful information, lists of suppliers and on-line solar energy calculators that will simplify the cost analysis and design processes.

Why buy the Solar Electricity Handbook?
The Handbook is a simple, practical guide to using...

Solar Cell Device Physics, Second Edition

Solar Cell Device Physics, Second Edition
by Stephen Fonash (Author)


There has been an enormous infusion of new ideas in the field of solar cells over the last 15 years; discourse on energy transfer has gotten much richer, and nanostructures and nanomaterials have revolutionized the possibilities for new technological developments. However, solar energy cannot become ubiquitous in the world's power markets unless it can become economically competitive with legacy generation methods such as fossil fuels.

The new edition of Dr. Stephen Fonash's definitive text points the way toward greater efficiency and cheaper production by adding coverage of cutting-edge topics in plasmonics, multi-exiton generation processes, nanostructures and nanomaterials such as quantum dots. The book's new structure improves readability by shifting many detailed equations to...

© 2014 BrightSurf.com