Science Current Events | Science News |

Study offers new way to discover HIV vaccine targets

March 22, 2013
Ragon Institute researchers develop a method to identify weak points in viral proteins that could be exploited for vaccine development

Decades of research and three large-scale clinical trials have so far failed to yield an effective HIV vaccine, in large part because the virus evolves so rapidly that it can evade any vaccine-induced immune response.

Researchers from the Ragon Institute of MGH, MIT and Harvard University have now developed a new approach to vaccine design that may allow them to cut off those evolutionary escape routes. The researchers have developed and experimentally validated a computational method that can analyze viral protein sequences to determine how well different viral strains can reproduce in the body. That knowledge gives researchers an unprecedented guide for identifying viral vulnerabilities that could be exploited to design successful vaccine targets.

The team, led by Arup Chakraborty, the Robert T. Haslam Professor of Chemical Engineering, Chemistry, Physics and Biological Engineering at MIT, has designed protein fragments (peptides) that would target these weaknesses. Ragon Institute researchers are now developing ways to deliver the peptides so they can be tested in animals.

"We think that, if it continues to be validated against laboratory and clinical data, this method could be quite useful for rational design of the active component of a vaccine for diverse viruses. Furthermore, if delivered properly, the peptides we have designed may be able to mount potent responses against HIV across a population," says Chakraborty, who is also the director of MIT's Institute for Medical Engineering and Science.

Chakraborty and his colleagues describe their findings in the March 21 issue of the journal Immunity. Lead author of the paper is Andrew Ferguson, a former postdoc in Chakraborty's lab who is now an assistant professor at the University of Illinois at Urbana-Champaign. Other authors are Bruce Walker, director of the Ragon Institute and a professor at Harvard Medical School; Thumbi Ndung'u of the Ragon Institute and the Doris Duke Medical Research Institute in South Africa; and Jaclyn Mann and Saleha Omarjee of the Doris Duke Medical Research Institute.

"This work stems from the novel approach to science that is the central mission of the Ragon Institute: to draw researchers from diverse scientific disciplines to catalyze new advances, the ultimate mission being to harness the immune system to prevent and cure human diseases," Walker says.

Rapid evolution

Typically when a vaccine for a disease such as smallpox or polio is given, exposure to viral fragments primes the body's immune system to respond powerfully if it encounters the real virus. With HIV, it appears that when immune cells in a vaccinated person attack viral peptides that they recognize, the virus quickly mutates its protein sequences so immune cells no longer recognize them.

To overcome this, scientists have tried analyzing viral proteins to find amino acids that don't often mutate, which would suggest that they are critical to the virus's survival. However, this approach ignores the fact that mutations elsewhere in the protein can compensate when those seemingly critical amino acids are forced to evolve, Chakraborty says.

The Ragon Institute team focused on defining how the virus's ability to survive depends on the sequences of its proteins, if they have multiple mutations. This knowledge could enable identification of combinations of amino acid mutations that are harmful to the virus. Vaccines that target those amino acids would force the virus to make mutations that weaken it.

With existing HIV protein sequence data as input, the researchers created a computer model that can predict the fitness of any possible sequence, enabling prediction of how specific mutations would affect the virus.

In this paper, the researchers focused on an HIV polyprotein called Gag, which is made up of several proteins that together are 500 amino acids long. The proteins derived from Gag are important structural elements of the virus. For example, a protein called p24 makes up the capsid that surrounds the virus's genetic material.

Each position in HIV proteins can be occupied by one of 20 possible amino acids. Sequence data from thousands of different HIV strains contain information on the likelihood of mutations at each position and each pair of positions, as well as for triplets and larger groups. The researchers then developed a computer model based on spin glass models, originally developed in physics, to translate this information into predictions for the prevalence of any mutant.

Using this model, the researchers can enter any possible sequence of Gag proteins and determine how prevalent it will be. That prevalence correlates with the fitness of a virus carrying that particular protein sequence, a relationship that the researchers demonstrated by using the model to predict the fitness of a few dozen Gag protein sequences, and verified by engineering those sequences into HIV viruses and testing their ability to replicate in cells grown in the lab. They also tested their predictions against human clinical data.

Visualizing fitness

The model also allows the researchers to visualize viral fitness using "fitness landscapes" - topographical maps that show how fit the virus is for different possible amino-acid sequences for the Gag proteins. In these landscapes, each hill represents sequences that are very fit; valleys represent sequences that are not.

Ideally, vaccine-induced immune responses would target viral proteins in such a way that mutant strains that escape the immune response correspond to the fitness valleys. Thus, the virus would either be destroyed by the immune response or forced to mutate to strains that cannot replicate well and are less able to infect more cells.

This would mimic the immune response mounted by people known as "elite controllers," who are exposed to the virus but able to control it without medication. Immune cells in those people target the same peptide sequences that the model predicted would produce the biggest loss of fitness when mutated.

This general approach could also be used to identify vaccine targets for other viruses, Chakraborty says.

"The reason we are excited about this is that we now have a method that combines two technologies that are getting cheaper all the time: sequencing and computation," he says. "We think that if this continues to be validated, it could become a general method of obtaining the fitness landscapes of viruses, allowing you to do rational design of the active components of vaccines."

"This work is a great example of how integrating expertise from different scientific disciplines - in this case physics, computational biology, virology and immunology - can accelerate progress toward an HIV vaccine," Walker says.

Massachusetts Institute of Technology

Related Immune Response Current Events and Immune Response News Articles

Indiana University study: Sexual activity causes immune system changes that increase chances of conception
Research from Indiana University has found that sexual activity triggers physiological changes in the body that increase a woman's chances of getting pregnant, even outside the window of ovulation.

Flu infection reveals many paths to immune response
A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological pathways.

Tick spit protein may trigger allergic reactions
Ticks have had millions of years to figure out how to bite without triggering their victims' immune response. Proteins in the arachnids' spit evolved to manipulate immune cells so that the bloodsuckers can suck blood and transmit pathogens in peace.

Nivolumab improves overall survival in patients with advanced kidney cancer
The targeted drug nivolumab significantly prolongs survival in patients with advanced kidney cancer, whose disease has progressed after their first treatment.

Breakthrough study demonstrates survival advantage with immune checkpoint inhibitor for advanced kidney cancer patients
For the first time, an immune checkpoint inhibitor has been proven to increase survival among patients with advanced renal cell carcinoma (RCC), a patient population for whom treatment options are currently limited.

Infections in childhood could provide clues to disease development in later life
The interaction between infections and the microbiota during infancy in the lungs could help provide clues to disease development later in life, according to the findings of a new study.

Nivolumab improves the proportion of lung cancer patients alive after more than a year
Patients with a type of lung cancer called non-squamous non-small cell lung cancer (non-SQ NSCLC) have limited treatment options and a dismal prognosis once their disease has advanced and initial treatment with platinum-based chemotherapy has failed.

Antimicrobial film for future implants
The implantation of medical devices is not without risks. Bacterial or fungal infections can occur and the body's strong immune response may lead to the rejection of the implant. Researchers at Unit 1121 "Biomaterials and Bio-engineering" (Inserm/Strasbourg university) have succeeded in creating a biofilm with antimicrobial, antifungal and anti-inflammatory properties.

New clues on the history of the smallpox vaccine virus
Smallpox - simply hearing the word evokes images of countless people suffering gruesome deaths throughout recorded history.

Naturally occurring 'GM' butterflies produced by gene transfer of wasp-associated viruses
Research teams from the University of Valencia and the University of Tours have discovered that genes originating from parasitic wasps are present in the genomes of many butterflies.
More Immune Response Current Events and Immune Response News Articles

Immune Response

Immune Response

On the wet Olympic peninsula of Washington state. Physician's Assistant Rick scales is having problems with some of his terminally-ill patients– –they aren't dying … Along with Makah tribal cop Jasmine Hughes, Scales starts to poke around, and they find way more than they expected. A classic medical mystery, from New York Times Bestselling author Steve Perry.

The Immune System Recovery Plan: A Doctor's 4-Step Program to Treat Autoimmune Disease

The Immune System Recovery Plan: A Doctor's 4-Step Program to Treat Autoimmune Disease
by Susan Blum (Author), Mark Hyman (Foreword), Michele Bender (Foreword)

One of the most sought-after experts in the field of functional medicine shares her proven four-step program to treat, reverse, and prevent autoimmune conditions and repair your immune system.

• Are you constantly exhausted?

• Do you frequently feel sick?

• Are you hot when others are cold, or cold when everyone else is warm?

• Do you have trouble thinking clearly, aka “brain fog”?

• Do you often feel irritable?

• Are you experiencing hair loss, dry skin, or unexplained weight fluctuation?

• Do your joints ache or swell but you don’t know why?

• Do you have an overall sense of not feeling your best, but it has been going on so long it’s actually normal to you?

IF you answered yes to any...

Primer to the Immune Response, Second Edition

Primer to the Immune Response, Second Edition
by Tak W. Mak (Author), Mary E. Saunders (Author), Bradley D. Jett (Author)

Written in the same engaging conversational style as the acclaimed first edition, Primer to The Immune Response, 2nd Edition is a fully updated and invaluable resource for college and university students in life sciences, medicine and other health professions who need a concise but comprehensive introduction to immunology. The authors bring clarity and readability to their audience, offering a complete survey of the most fundamental concepts in basic and clinical immunology while conveying the subject’s fascinating appeal. The content of this new edition has been completely updated to include current information on all aspects of basic and clinical immunology. The superbly drawn figures are now in full color, complemented by full color plates throughout the book. The text is further...

The Cytokines of the Immune System: The Role of Cytokines in Disease Related to Immune Response

The Cytokines of the Immune System: The Role of Cytokines in Disease Related to Immune Response
by Zlatko Dembic (Author)

The Cytokines of the Immune System catalogs cytokines and links them to physiology and pathology, providing a welcome and hugely timely tool for scientists in all related fields. In cataloguing cytokines, it lists their potential for therapeutic use, links them to disease treatments needing further research and development, and shows their utility for learning about the immune system. This book offers a new approach in the study of cytokines by combining detailed guidebook-style cytokine description, disease linking, and presentation of immunologic roles.Supplies new ideas for basic and clinical researchProvides cytokine descriptions in a guidebook-style, cataloging the origins, structures, functions, receptors, disease-linkage, and therapeutic potentialsOffers a textbook-style view on...

The Th2 Type Immune Response in Health and Disease: From Host Defense and Allergy to Metabolic Homeostasis and Beyond

The Th2 Type Immune Response in Health and Disease: From Host Defense and Allergy to Metabolic Homeostasis and Beyond
by William C. Gause (Editor), David Artis (Editor)

The type 2 immune response that develops during infectious disease has undergone major paradigm shifts in the last several years as new cell types and pathways have been identified. It is now clear that the type 2 immune response, characterized by elevations in specific cytokines, including IL-4, IL-5 and IL-13, is associated with helminth infections in both humans and mice. This response is complex and includes effector functions that mediate resistance, contributing to expulsion and in some cases destruction, of the parasite. But just as importantly, the type 2 immune response can also mediate tolerance mechanisms, which can mitigate tissue injury as these large multicellular parasites transit through vital organs. The tolerance mechanisms include both tissue repair and immune...

Basic Immunology: Functions and Disorders of the Immune System, 4e

Basic Immunology: Functions and Disorders of the Immune System, 4e
by Abul K. Abbas MBBS (Author), Andrew H. H. Lichtman MD PhD (Author), Shiv Pillai MBBS PhD (Author)

Understand all the essential concepts in immunology with Basic Immunology: Functions and Disorders of the Immune System! This concise, focused text provides you with an up-to-date, accessible introduction to the workings of the human immune system. Efficiently master the immunology information you need through clinically focused content, logically organized by mechanism. Apply what you've learned to real-world situations by referencing the appendix of clinical cases. Enhance your learning with the help of numerous full-color illustrations and useful tables, as well as summary boxes, review questions, and a glossary of immunology terms.Study immunology anywhere! Online access to opens the door to an enhanced e-book and ancillary components!Visualize complex...

Protective and Pathological Immune Responses in the CNS (Current Topics in Microbiology and Immunology)

Protective and Pathological Immune Responses in the CNS (Current Topics in Microbiology and Immunology)
by B. Dietzschold (Editor), J.A. Richt (Editor)

In spite of the protection of the CNS there are situations where immune responses occur due to different disease processes. While antigen-specific cells of the adaptive immune response are not normally functional in the CNS tissue, CNS resident cells respond to infection or insult. One mechanisms is through the induction of apoptosis in virus infected neurons, which may be protective or pathogenic depending on the extent of cell death.

Immune response

Immune response
by Richard Helfrich (Author), James Cordell (Author)

179 pages

How the Immune System Works, Includes Desktop Edition

How the Immune System Works, Includes Desktop Edition
by Lauren M. Sompayrac (Author)

How the Immune System Works is not a comprehensive textbook. It's the book thousands of students have used to help them understand what's in their big, thick, immunology texts. In this book, Dr. Sompayrac cuts through the jargon and details to reveal, in simple language, the essence of this complex subject. Fifteen easy to follow lectures, featuring the uniquely popular humorous style and engaging analogies developed by Dr Sompayrac, provide an introduction to the 'bigger picture', followed by practical discussion on how each of the components interacts with one another. Now featuring full-color diagrams, this book has been rigorously updated for its fourth edition to reflect today's immunology teaching and includes updated discussion of B and T cell memory, T cell activation, vaccines,...

The Autoimmune Solution: Prevent and Reverse the Full Spectrum of Inflammatory Symptoms and Diseases

The Autoimmune Solution: Prevent and Reverse the Full Spectrum of Inflammatory Symptoms and Diseases
by Amy Myers (Author)

Over 90 percent of the population suffers from inflammation or an autoimmune disorder. Until now, conventional medicine has said there is no cure. Minor irritations like rashes and runny noses are ignored, while chronic and debilitating diseases like Crohn's and rheumatoid arthritis are handled with a cocktail of toxic treatments that fail to address their root cause. But it doesn't have to be this way.In The Autoimmune Solution, Dr. Amy Myers, a renowned leader in functional medicine, offers her medically proven approach to prevent a wide range of inflammatory-related symptoms and diseases, including allergies, obesity, asthma, cardiovascular disease, fibromyalgia, lupus, IBS, chronic headaches, and Hashimoto's thyroiditis.

© 2015